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Summary

Size specification of macromolecular assemblies in the cyto-
plasm is poorly understood [1]. In principle, assemblies

could scale with cell size or use intrinsic mechanisms. For
the mitotic spindle, scaling with cell size is expected, be-

cause the function of this assembly is to physically move
sister chromatids into the center of nascent daughter cells.

Eggs of Xenopus laevis are among the largest cells known
that cleave completely during cell division. Cell length in

this organism changes by two orders of magnitude (w1200
mm to w12 mm) while it develops from a fertilized egg into

a tadpole [2]. We wondered whether, and how, mitotic
spindle length and morphology adapt to function at these

different length scales. Here, we show that spindle length in-
creases with cell length in small cells, but in very large cells

spindle length approaches an upper limit of w60 mm. Further

evidence for an upper limit to spindle length comes from an
embryonic extract system that recapitulates mitotic spindle

assembly in a test tube. We conclude that early mitotic spin-
dle length in Xenopus laevis is uncoupled from cell length,

reaching an upper bound determined by mechanisms that
are intrinsic to the spindle.

Results and Discussion

Spindle Length Is Uncoupled from Cell Length

during First Mitoses
We used immunofluorescence to measure spindle size in Xen-
opus laevis embryos fixed at different stages. Spindle length
was measured at metaphase, and cell length was measured
as longest diameter in the direction given by the pole-pole
axis of the spindle (Figure 1C).To allowcomparison withmeiotic
spindles, which do not contain centrosomes, we defined spin-
dle length as pole-to-pole distance, where the pole is the posi-
tion where many microtubules terminate (Figure 1C). Figure 1E
shows a plot of spindle length versus cell length. At stages 8 and
9, spindle length increased with cell length, but in earlier stages,
and larger cells, it appeared to asymptote to an upper limit of
w60 mm. Through mitoses 1 to 7, cell length decreased w5-
fold while spindle length only decreased w1.2 fold (Figure 1E).

Spindle morphology also changed with development and
cell length. At stages 8 and 9, centrosomes and poles were
superimposed at the magnification we used, similar to the
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case of somatic tissue-culture cells (Figure 1A). At mitosis 7,
the centrosomes appeared detached from the spindle poles
at metaphase, with a relatively microtubule-sparse region con-
necting them (Figure 1B). The distance between centrosomes
and poles was even larger in the very early spindles (Figure 1C)
[3]. The partial disconnection of centrosomes might be a strat-
egy of the cell to increase centrosome-to-centrosome distance
when spindles reach an upper limit in length. Interestingly, the
upper limit to mitotic spindle length was about twice the length
of meiotic spindles (Figures 1D and 1E).

In smaller cells, where spindle length scales with cell length,
we can imagine three spindle-length-determining mecha-
nisms: (1) Spindle length is determined extrinsically via cellular
boundaries. (2) A factor involved in spindle-length determina-
tion is provided in limited number. Possible candidates for
these factors are tubulin and MAPs that influence microtubule
dynamics [4] or microtubule-flux properties [5]. (3) Length-reg-
ulating mechanisms that are intrinsic to the spindle systemat-
ically change during development.

The independence of spindle length from cell length we ob-
served in very large cells suggests that spindle length, under
these circumstances, is determined via a mechanism that is in-
trinsic to the spindle, such as microtubules dynamics or DNA
content. Alternatively, spindle length in the large cells may
be governed by some internal boundary that we were not
able to visualize.

Mitotic Spindles in Embryo Extract
The standard egg extract system for spindle assembly [6] uses
cytoplasm from unfertilized eggs that are arrested in meiosis II
and assembles spindles whose length and morphology closely
resemble meiosis II spindles in the egg (Figure 2A) [7]. The
length of these spindles cannot be limited by the length of their
container (which is a test tube), or by limiting provision of some
spindle component, because mean length is insensitive to
a wide range of spindle concentrations in the extract [8].
Thus, meiotic spindle length must be limited by a spindle-intrin-
sic mechanism. To test whether the same holds true for early
mitotic spindles, we developed an embryo extract system
that is able to recapitulate their assembly in the test tube. To
avoid making a meiotic extract, it is important that the master
regulator of meiosis, Mos, be degraded. We made sure that
this was the case by preparing the extract from embryos that
had already cleaved. By this time Mos is fully degraded [9]. Ex-
tract prepared from fertilized eggs is able to go through several
cell cycles separated by w50 min [10]. Although sperm nuclei
condense during mitosis in this system, we observed no spin-
dles assembling, perhaps because the extract conditions make
spindle assembly slow compared to cell-cycle progression. We
therefore prepared extract from fertilized embryos at the two-
cell stage, added sperm chromatin, incubated it to allow time
in interphase for chromatin assembly and DNA replication,
and after 80 min arrested the extract in mitosis by addition of
the C-terminal fragment of EmiI [11, 12]. This fragment is a po-
tent inhibitor of the anaphase-promoting complex (APC), which
we used rather than the standard mitotic-exit inhibitor cyto-
static factor (CSF), because CSF extract might reactivate mei-
osis [13]. About 90 min after adding the APC inhibitor, spindles
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Figure 1. Spindle Size Is Uncoupled from Cell Size during First Mitoses

X. laevis embryos at various stages of development were fixed and stained for tubulin (yellow) and DNA (red).

(A) Embryo at stage 8: animal pole with smaller cells and smaller spindles on top, vegetal pole with larger cells and larger spindles on bottom.

(B) Embryo at mitosis 7, animal part.

(C) Second mitotic spindle. White lines define spindle and cell size used throughout this paper.

(D) Egg arrested at metaphase of meiosis II with arrow pointing at spindle. The scale bar for the upper row represents 500 mm. The scale bar for the lower row

represents 20 mm.

(E) Plot of spindle size versus cell size at different stages of development. Spindle size increases with cell size but asymptotically reaches an upper limit of

w60 mm. Plot on the right is a zoom-in of smaller cells and spindles.
assembled typically with prominent astral microtubules and
similar morphology to early mitotic spindles (Figure 2B). Their
length was 48 6 6 mm (standard deviation [SD], n = 28), compa-
rable to mitotic spindles in early blastomeres, and significantly
larger than meiotic extract spindles with a length of 32 6 4 mm
(SD) [8]. The length difference of meiotic and mitotic extract
spindles appears to reflect the length differences of the
in vivo counterparts. To our knowledge, this is the first time
that truly mitotic spindles could be assembled in a test tube.
Importantly, the length of these mitotic extract spindles did
not scale with the test tube, strongly suggesting that early
mitotic spindle length is determined by spindle-intrinsic mech-
anisms, like meiosis II spindles, but not by a cell-internal
boundary. Mitotic extracts assemble spindles with compara-
ble length to their in vivo counterparts, but the timing of spindle
assembly was variable, and we were not able to make this
system robust enough for more demanding experiments like
immunodepletion or spindle-assembly imaging.
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The Upper Limit to Spindle Length Is Slightly

Sensitive to Ploidy
Meiosis II spindles contain only half the number of chromo-
somes as larger, early mitotic counterparts, and meiotic

Figure 2. Embryo Extract Is Able to Assemble Mi-

totic Spindles

DNA is shown in red and tubulin in yellow.

(A) Extract prepared from meiosis II-arrested

eggs assembles spindles that show similar mor-

phology to meiotic in vivo spindles.

(B) Spindles in extract prepared from embryos

were arrested in mitosis with addition of the

APC inhibitor EmiI. The spindles formed show

similar morphology to mitotic in vivo spindles.

The scale bar represents 20 mm.

spindle assembly depends on signals
from chromatin [14]. Thus, we wondered
whether DNA mass plays a role in the
spindle-intrinsic length-determination
mechanism in early mitosis [15]. To test
this, we compared spindle length in hap-
loid and diploid embryos. Because we
found that spindles lengthen toward
the onset of anaphase and to allow
more accurate measurement than in Fig-
ure 1, we fixed embryos of a synchro-
nously fertilized population between
the first and second cytokineses (w112

min and w160 min postfertilization [pf], respectively) in 1 min
intervals and measured spindle length. We chose the two-
cell stage because the orientation of the mitotic spindles is
clearly defined by the longest cell axis (Figure 3C), facilitating

Figure 3. Halving the DNA Content Reduces

Spindle Length by w10%

(A) Percentage of embryos (synchronously fertil-

ized) in anaphase (blue bars) was fitted to a cumu-

lative Gaussian distribution (red line), and the

time for metaphase-anaphase transition was cal-

culated at 132 6 3 min (SD) pf. Spindle length be-

fore peak of anaphase onset (full squares) was fit-

ted linearly (green line), revealing spindle growth

of 1.0 mm/min. Delayed spindles (shown as or-

ange squares) were ignored for growth measure-

ment because this would have systematically

underestimated growth rate.

(B) Albino eggs were fertilized with UV-treated

sperm from a pigmented male, resulting in tad-

poles with no pigments but haploid phenotype.

Controls developed with pigments and diploid

phenotype.

(C) Sperm-derived DNA (arrow) is separate from

spindles at two-cell stage of haploid embryo.

The scale bar represents 500 mm.

(D) Mean spindle length for haploids is 55.2 mm

and therefore w10% shorter than diploids with

62.1 mm. Standard errors are 0.9 mm and 1.1 mm,

respectively, with a statistically significant p value

of 0.005%.
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alignment of spindles in the optical plane for microscopy. By
fitting the percentage of cells in anaphase to a cumulative
Gaussian distribution, we calculated the most likely time for
metaphase-anaphase transition at 132 6 3 min (SD) pf
(Figure 3A). A linear fit of spindle length until anaphase onset
revealed steady elongation of the spindle during prometa-
phase and metaphase at w1.0 mm/min (Figure 3A). We then
defined the maximum metaphase length as the average mea-
sured from embryos fixed during a 5 min window before the
peak of anaphase transition. For the diploid population in
Figure 3A, this value was 61.6 6 3.1 mm (SD) (n = 28). We
then produced haploid embryos by fertilizing albino eggs
with UV-treated sperm from a pigmented male [16] and com-
pared their spindle length to diploid embryos derived from
the same parents [17]. The large majority of UV-sperm-fertil-
ized tadpoles showed no pigment (>97%) and showed a phe-
notype typical of haploids (Figure 3B) [18, 19]. Haploidy was
further confirmed by counting of chromosomes (data not
shown). At the two-cell stage, the UV-treated sperm nucleus,
with few microtubules associated, was typically observed
away from the spindle (arrow in Figure 3C). Only one free nu-
cleus was observed, indicating that UV treatment inhibited
replication.

Average spindle length was measured as 55.2 6 3.9 mm (SD,
n = 14) for haploids and 62.1 6 3.1 mm (SD, n = 12) for diploids
(Figure 3D). A t test resulted in a p value of 0.005%, making the
small difference statistically significant. We conclude that the
upper limit to mitotic spindle size can be reduced by w10%
by halving the amount of DNA. This difference is similar to

Figure 4. Relatively Small Spindle Is Compen-

sated by Enormous Anaphase B-like Movement

Embryos of a synchronously fertilized population

were fixed between first and second cytokineses

and stained for tubulin (yellow) and DNA (red).

(A) At anaphase the astral microtubules start to

elongate.

(B) Up to a DNA-to-DNA distance of w180 mm,

DNA is still condensed and surrounded by high

staining of microtubules. Astral microtubules

form a hollow structure.

(C) Nuclear envelope has reformed, and finally

the nuclei have been separated by w400 mm, as-

tral microtubules reach the cell cortex, and cyto-

kinesis starts.

(A–C) The scale bar for the upper row represents

500 mm; bars in lower row represent 20 mm.

(D) Plot of DNA-to-DNA distance versus time.

Linear fit estimates speed of DNA separation at

w15 mm/min.

(E) Cytokinesis, but not separation of DNA, is in-

hibited by addition of 33 mg/ml of actin-depoly-

merizing Cytochalasin B.

the DNA-dependent length difference
observed in meiotic extract spindles
[20]. Thus, signaling from chromatin
may contribute to spindle length control
in meiotic and mitotic spindles, but it
does not appear to be a major factor
governing length. Haploid mitotic spin-
dles were about 2-fold longer than meio-
sis II spindles (Figures 1C–1E) that

contain the same amount of DNA, showing that ploidy alone
cannot account for length differences between meiosis and
mitosis.

Relatively Small Spindles Undergo Long,
Fast Anaphase B-like Movement

How can a spindle that is only 1/20th of the cell length (Figure 1E)
segregate chromosomes to the center of the daughter cells? To
find out, we fixed synchronously fertilized populations at differ-
ent time intervals at the two-cell stage and observed the distri-
bution of DNA and microtubules. At the onset of anaphase,
astral microtubules started to extend (Figures 4A and 4B), rap-
idly forming a hollow structure, where (presumed) plus ends
move out toward the cortex but many minus ends apparently
move out at roughly the same rate. Chromosomes stayed con-
densed and were surrounded by bright stain for tubulin until
they had separated by w180 mm (Figure 4B). At approximately
this distance, the nuclear envelope reformed, but the DNA con-
tinued to separate to a final distance of w400 mm. By this time,
astral microtubule plus ends were touching the cell cortex, and
the second cytokinesis was initiated (Figure 4C). Sister-DNA
separation during anaphase was plotted versus time (Fig-
ure 4D). A linear fit showed a distance increase of w15 mm/
min (Figure 4D), with no obvious difference in separation rate
for condensed or uncondensed DNA. This is fast compared
to the w4 mm/min observed for anaphase B movement in
HeLa cells [21].

To test whether actin is involved in the separation of the DNA
[22], we observed fixed embryos that had been incubated with
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the F-actin-capping drug Cytochalasin B (33 mg/ml) [23]. This
resulted in inhibition of cytokinesis, but spindle assembly
and separation of DNA were not measurably perturbed (Fig-
ure 4E). However, although the drug did block cleavage, it is
possible that its concentration was insufficient to block
actin-dependent processes deep in the embryo, so our con-
clusion that F-actin is not required for DNA separation is pro-
visional.

Our measurements in large cells, and extract experiments,
suggest that Xenopus early mitotic spindle length is deter-
mined via an intrinsic mechanism that sets an upper length of
w60 mm. This limit was reduced by w10% in haploid spindles,
suggesting that signals from DNA contribute to setting length
but are not a major factor. Recently, we proposed a model for
meiotic spindle length regulation in which length depends pri-
marily on a balance between microtubule nucleation loss and
transport by motors [5]. Perhaps a spindle-intrinsic mechanism
of this kind also operates in mitotic spindles.

Relatively small spindle size in large cells requires adaptation
of the mitotic process, which includes an unusually long and
fast anaphase B, and perhaps also partial separation of centro-
somes from the spindle. One question puzzles us greatly: How
can the relatively small spindle orient itself in the large cell to
specify the next cleavage plane perpendicular to the longest
cell axis (Figure 3C) [24–26]? In more ordinary sized cells, spin-
dle orientation is thought to require contact of astral microtu-
bules with the cortex [27, 28]. Perhaps some microtubules
are long enough to reach the cortex during prometaphase and
metaphase of early Xenopus mitosis, but this seems unlikely
because these microtubules would have to be much longer
than the spindle microtubules, and they would have to elongate
to the cortex much faster than the astral microtubules that grow
out at anaphase (w15 mm/min, estimated from images like
those in Figure 4). Rather, we suspect that some uncharacter-
ized spindle-orientation mechanism must exist. Perhaps the
astral microtubules at late anaphase can sense the longest
cell axis and determine centrosome orientation for the next
spindle.

Experimental Procedures

Immunofluorescence of Embryos

Embryos were raised at 16�C. Previous protocols [29] were modified as fol-

lows. Embryos were fixed in 50 mM EGTA, 10% H2O, 90% methanol for at

least 12 hr. Pigmented embryos were bleached in 10% H2O2, 20% H20,

and 70% methanol under illumination for 24 hr. Specimens were dehydrated

with a series of 20%, 40%, 80%, and 100% TBS/Methanol. For hemisection,

embryos were cut in TBS on an agarose cushion with a scalpel. Specimens

were incubated with directly labeled a-tubulin antibody (T6074 [Sigma] 4.6/

AB labeling ratio, Alexa 547 [Invitrogen]) 1:100 for at least 12 hr at 4�C in

TBSN (TBS + 0.1% Nonidet P40 + 0.1% sodium azide, 2% BSA, 1% FCS).

Embryos were washed in TBSN for at least 24 hr. DNA was stained with Yo-

Pro3 (Invitrogen) (5 mM) or To-Pro-1 (Invitrogen) (5 mM) in TBSN for 30 min

and washed in TBSN for 1 hr. After one wash in TBS and two changes of

methanol, embryos were cleared in Murray’s clear (benzyl benzoate, part

benzyl alcohol 2:1) and mounted in metal slides with a hole (thickness of

1.2 mm for whole mount or 0.8 mm for hemisected). Coverslips were at-

tached to the bottom via parafilm. Microscopy was performed on an upright

Biorad Radiance 2000 or inverted Zeiss Meta 550 with a 103 (0.3 NA) or 203

(0.75 NA) objective.

Comparison of Haploid and Diploid Spindle Length

For the generation of haploid embryos, half a testis was macerated with an

Eppendorf pestle in 1 ml of Marc’s modified Ringer’s solution (MMR) and

pressed with a syringe through cheese cloth to remove tissue junk. The sus-

pension was placed on a Petri dish with 7 cm diameter and irradiated two

times at 30,000 microjoules/cm2 with swirling in between in a UV Stratalinker
2400 [30]. Embryos were fertilized with this suspension and fixed at the two-

cell stage, hemisected along the first cleavage plane and prepared for im-

munofluorescence as described above. Spindle size within one embryo is

more similar than spindles within the whole population. Therefore, for the

t test (ttest2 function in Matlab [Mathworks]), the average spindle length

per embryo was used. Karyotyping was performed as described [31]. Curve

fitting was performed with cftool in Matlab (Mathworks).

Embryo Extract Spindles

Published protocols [6, 32] for meiotic extract spindles were modified as

follows to give mitotic extract spindles. Females were squeezed and eggs

were fertilized and dejellied. Embryos from different animals were kept sep-

arate, and only if fertilization rate was close to 100% were embryos used.

After the first cleavage, nonfertilized eggs were sorted out because of the

dominant effect of CSF. Embryos were washed in XB (100 mM KCl, 0.1

mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 50 mM Sucrose, pH 7.8 [KOH]). Sil-

icon oil AP100 (0.75 ml; Fluka) was added to a 50Ultra-Clear Tube (11 3 34

mm) (Beckmann) and embryos were transferred to top, incubated for 15 min

on ice, and spun at 2000 RPM in a JS4.2 (Beckmann) for 4 min at 4�C. Buffer

and oil were removed. Embryos were crushed at 12,000 RPM in a TLS-55

(Beckmann) for 15 min at 4�C. The cyotplasmic fraction was removed with

a syringe. A clearing spin in a tabletop centrifuge at 4�C, 4 min, 12,000 3

g followed to remove residual oil. Cytochalasin D (10 mg/ml), LPC (10 mg/

ml each of leupeptin, pepstatin, chymostatin), and Energy Mix (7.5 mM

creatine phosphate, 1 mM ATP, 0.1 mM EGTA, 1 mM MgCl2) were added.

Demembranated sperm was added and extract was allowed to cycle at

room temperature. After w80 min, bacterially expressed C-terminal frag-

ment of EmiI (23 mg/ml) was added at 1:200. Spindles typically formed after

an additional 90 min. C-terminal fragment of EmiI was purified via a His-tag

and frozen in XB + 200 mM KCl.
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