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Abstract 22 

Great progress has been made in understanding gut microbiome’s products and their effects on 23 

health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. 24 

Here we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope 25 

tracing. The main input to microbial carbohydrate fermentation is dietary fiber, and to branched-26 

chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 27 

3-hydroxybutyrate and urea (but not glucose or amino acids) feed the gut microbiome. To 28 

determine nutrient preferences across bacteria, we traced into genus-specific bacterial protein 29 

sequences. We find systematic differences in nutrient use: Most genera in the phylum Firmicutes 30 

prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such 31 

preferences correlate with microbiome composition changes in response to dietary modifications. 32 

Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the 33 

ingested nutrients.  34 

 35 
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INTRODUCTION 37 

The gut microbiome possesses an enormous diversity of enzymes, exceeding the number in 38 

mammals’ genomes by more than 100-fold (Qin et al., 2010). This enzymatic capacity enables the 39 

processing of incoming dietary nutrients into a broad spectrum of microbial metabolites. Some of 40 

these reach the host circulation at substantial concentrations (Lai et al., 2021; Quinn et al., 2020). 41 

Microbial metabolites can play important roles in host pathophysiology. For example, short-chain 42 

fatty acids (SCFAs; acetate, propionate, butyrate) (Dalile et al., 2019; Koh et al., 2016), 43 

trimethylamine N-oxide (Tang et al., 2013), secondary bile acids (Arab et al., 2017; Funabashi et 44 

al., 2020), indole-3-propionate (Wikoff et al., 2009), and imidazole propionate (Koh et al., 2018) 45 

affect immune maturation (Campbell et al., 2020; Hang et al., 2019), insulin sensitivity (Koh et 46 

al., 2018), cancer growth (Garrett, 2015; Yoshimoto et al., 2013), and cardiovascular disease 47 

(Nemet et al., 2020; Wang et al., 2011).  48 

Both to replicate themselves and to release metabolic products, gut bacteria require nutrient inputs. 49 

These come in forms including ingested food, host-synthesized gut mucus (Desai et al., 2016; 50 

Sicard et al., 2017), and host circulating metabolites (Scheiman et al., 2019). The availability of 51 

dietary nutrients to gut microbiota depends on the extent of host absorption: nutrients that are 52 

absorbed in the small intestine, like starch, are not available to the colonic microbiome. In contrast, 53 

nutrients that are poorly digested in the upper gastrointestinal tract, like fiber, can be key 54 

microbiome feedstocks (Lund et al., 2021; Wong and Jenkins, 2007).  55 

Isotope tracing enables the measurement of the inputs to metabolites and biomass in a quantitative 56 

manner. Such studies, employing radioactive tracers, defined the basics of mammalian metabolism 57 

(Wolfe, 1984). Recent work has increasingly relied on stable isotope tracers coupled to mass 58 

spectrometry detection, which enables the measurement of labeling in specific downstream 59 

products (Fernández-García et al., 2020; McCabe and Previs, 2004). This approach has revealed 60 

fundamental features of host metabolism, such as circulating lactate being a major TCA fuel 61 

(Faubert et al., 2017; Hui et al., 2017). In addition, it has provided important insights into host-62 

microbiome metabolic interplay. For example, it revealed that dietary fructose is processed by the 63 

microbiome into acetate, which fuels hepatic lipogenesis (Jang et al., 2018; Zhao et al., 2020). 64 

In principle, stable isotope tracing coupled to mass spectrometry can also be applied to determine 65 

the metabolic inputs to specific microbes, based on measuring labeling in bacteria-specific peptide 66 

sequences (Berry et al., 2015; Holmes et al., 2017; Oberbach et al., 2017; Reese et al., 2018; Zhang 67 

et al., 2016a, 2016b). By infusing nitrogen-labeled threonine to label host mucus, investigators 68 

were able to compare the contribution of dietary versus mucus protein to the gut microbiome and 69 

observed a shift towards more mucus contribution in a low-protein diet condition (Holmes et al., 70 

2017).  71 
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Here, we perform the first large-scale, quantitative assessment of the metabolic inputs to the gut 72 

microbiome and its products. We examine the contributions from dietary starch, fiber, and protein, 73 

host mucus, and most major circulating host nutrients, finding that lactate, 3-hydroxybutyrate, and 74 

urea stand out for passing from the host to the gut microbiome. Moreover, based on the 75 

measurement of bacteria-specific peptide sequences, we assess the nutrient preferences of different 76 

bacterial genera and show that these preferences align with microbiome composition changes in 77 

response to altered diet. 78 

RESULTS  79 

Microbiome consumes less digestible dietary components 80 

A major mechanism by which the microbiome may impact host physiology is via secreted 81 

metabolic products. As the intestine and colon drain into the portal circulation, metabolites 82 

produced by the gut microbiome should be enriched in the portal relative to systemic blood. We 83 

measured, in the portal, systemic circulation and the cecal contents, the absolute concentrations of 84 

more than 50 metabolites characterized in the literature as microbiome-derived (Campbell et al., 85 

2020; De Vadder et al., 2014; Han et al., 2021; Hang et al., 2019; Koh et al., 2018; Mager et al., 86 

2020; Ridlon et al., 2014; Wikoff et al., 2009) (Figure 1A, S1A, Table 1, S1-2). Most microbiome 87 

metabolites were elevated in the portal circulation relative to systemic blood, and all but two 88 

(inosine and N-acetyl-tryptophan, which are apparently mainly host derived) were depleted by 89 

antibiotics treatment.  90 

The dominant excreted products on a molar basis (0.4 – 2 mM in the portal blood) are SCFAs. 91 

Other relatively abundant microbiome products (10 - 30 uM) are aromatic amino acid fermentation 92 

products (phenol, indoxyl sulfate, and 3-phenylpropionate) and branched-chain fatty acids 93 

(valerate, isovalerate, 4-methylvalerate, isobutyrate, 2-methylbutyrate). While primary bile acids 94 

were also present in the portal circulation at up to ~ 10 uM concentration, these are produced by 95 

the host and accordingly were not included in Table 1. Secondary bile acids, which are produced 96 

from primary bile acids by the microbiome, were lower in absolute concentration, the most 97 

abundant being tauroursodeoxycholic acid (3 uM in portal vein).  98 

To probe the dietary inputs to gut microbial products, we began by feeding mice, by oral gavage, 99 

starch (readily digestible glucose polymer) and inulin (slowly digestible fructose polymer, i.e., 100 

soluble fiber) (Figure 1B). Following 13C-starch gavage, labeled glucose, lactate, and alanine 101 

quickly appeared in the portal circulation (Figure 1C, S1B). In contrast, after 13C-inulin gavage, 102 

substantial labeled fructose, glucose, lactate, and alanine were not observed, and instead labeled 103 

portal metabolites slowly appeared in the form of SCFAs (Figure 1C, S1C). Quantitative analysis 104 

based on the portal-systemic differences in serum metabolite labeling (Jang et al., 2018) revealed 105 

that most starch carbons (~75%) become circulating glucose, lactate, and alanine, with no 106 
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discernible labeling of SCFAs. In contrast, ~ 40% of inulin carbons become SCFAs (Figure S1C), 107 

with the remainder being undigested and excreted in the feces (Figure S1D). Measurement of 108 

cecal content revealed that dietary inulin, but not starch, extensively labeled glycolytic and TCA 109 

intermediates and amino acids in the cecal content (Figure 1D).  110 

We next carried out similar experiments, comparing the gavage of a free amino acid mixture to 111 

algal protein, both uniformly 13C-labeled (Figure 1B). The free amino acid feeding resulted in the 112 

rapid appearance of labeled amino acids in portal circulation, while the algal protein did not 113 

(Figure 1E). Instead, the algal protein, but not free amino acids, substantially labeled amino acids 114 

within the cecal contents (Figure 1F). Moreover, the algal protein copiously labeled microbiome-115 

derived portal vein metabolites: SCFAs, branched-chain fatty acids, and aromatics (indole, indole-116 

3-propionate, 3-phenylpropionate) (Figure S1E-F). Thus, poorly digestible carbohydrates and 117 

protein feed the microbiome directly, and the host indirectly via microbiome-derived products.  118 

Few circulating metabolites reach the microbiome 119 

Next, we examined the possibility that nutrients in host circulation feed the gut microbiota. We 120 

infused deuterated water and eighteen major circulating nutrients (13C-labeled) into the systemic 121 

circulation of pre-catheterized mice (Figure 2A). The infusion rates were selected to achieve 122 

modest but readily measurable labeling without substantially perturbing circulating concentrations. 123 

Circulating labeling reached a steady-state by 2.5 h, at which time we collected serum and feces 124 

to quantitate the carbon contributions of each circulating nutrient to the corresponding fecal 125 

metabolites. Upon intravenous infusion of 13C-lactate, fecal lactate labeled rapidly (Figure 2B).  126 

Most infused circulating nutrients, however, did not penetrate the feces (Figure 2C-D). Indeed, 127 

while water fully exchanged with the feces, among abundant circulating carbon carriers, only 128 

lactate and 3-hydroxybutyrate penetrated. Glucose, amino acids, TCA intermediates and fatty 129 

acids did not. Both lactate and 3-hydroxybutyrate are substrates of monocarboxylate transporters 130 

(MCTs), which are highly expressed in the colonic epithelium (Halestrap and Price, 1999, p. 1). 131 

Thus, in contrast to most host circulating metabolites, which do not reach the colonic microbiome, 132 

monocarboxylic transporters render circulating lactate and 3-hydroxybutyrate accessible to gut 133 

microbes. 134 

Circulating urea is a microbiome nitrogen source 135 

In addition to carbon, nitrogen is a fundamental constituent of all living cells. To assess nitrogen 136 

sources of the gut microbiome, we infused twelve abundant circulating nutrients in 15N-labeled 137 

form. Nitrogen from circulating urea and ammonia, but not amino acids, penetrates the feces and 138 

contributes to microbiome amino acids (Figure 2E, S2A-B).  139 
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The liver converts ammonia into urea. Accordingly, we were curious if ammonia contributes to 140 

the microbiome directly, or only indirectly after being converted by the host into circulating urea 141 

(Bartman et al., 2021). Ammonia’s contribution is quantitatively explained by the product of its 142 

contribution to circulating urea and urea’s microbiome contribution (Figure S2C-D). Thus, urea 143 

is the main circulating host metabolite that provides nitrogen to the gut microbiome. 144 

Microbiota synthesize amino acids from fiber and urea 145 

To determine the physiological sources of microbiome metabolites, we measured their labeling 146 

after ad libitum feeding of isotopically enriched food. To this end, we fed mice standard chow with 147 

a portion of the fiber, fat, or protein 13C-labeled. To account for circulating nutrient inputs, we also 148 

infused 13C-lactate or 3-hydroxybutyrate (Figure 3A, S3A). These studies identified a majority of 149 

the carbon feeding into most microbiome central metabolites, with glycolytic and pentose 150 

phosphate metabolites labeling almost exclusively coming from dietary fiber (inulin), while 151 

pyruvate and TCA metabolites are also labeled from dietary algal protein and circulating lactate 152 

(Figure 3B).   153 

We next examined inputs to microbiome amino acids, tracing also with 15N-labeled dietary protein 154 

and infused urea. Unlike mammals, most gut bacteria have the biosynthetic capacity to make all 155 

20 proteogenic amino acids. Nevertheless, we observed that “essential amino acids,” which cannot 156 

be made by mammals and require the expression of extensive biosynthetic pathways in bacteria, 157 

are derived mainly from dietary proteins. In contrast, “non-essential amino acids” are primarily 158 

synthesized within the gut microbiome, using dietary inulin and circulating lactate as carbon 159 

sources (Figure 3C). Dietary protein was the main nitrogen source for both essential and non-160 

essential amino acids, with host urea also contributing substantially to the non-essential amino 161 

acids (Figure 3D). Importantly, the amino acids synthesized by the microbiome, stay in the 162 

microbiome: We do not observe discernible labeling of these amino acids in the host (Figure S3B). 163 

Consistent with the gut microbiome synthesizing amino acids from fiber carbon and urea nitrogen, 164 

across amino acids, urea’s nitrogen contribution correlated with inulin’s carbon contribution 165 

(Figure 3E).  Thus, the microbiome obtains amino acids from a blend of dietary protein catabolism 166 

and de novo synthesis fed by dietary fiber and urea. 167 

Diverse microbiome products come from dietary protein  168 

We next examined, using isotope tracing, the carbon inputs to the microbiome products, especially 169 

the ones excreted into the portal circulation (Table 1). SCFAs, the most abundant microbial 170 

metabolites, come mainly from dietary fiber with minor contributions from dietary protein and 171 

host circulating lactate. Many less abundant ones, however, are almost exclusively derived from 172 

dietary protein (Table 1).  173 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.25.477736doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477736
http://creativecommons.org/licenses/by/4.0/


In addition to classical microbiome products, we also observed metabolites that are made in a 174 

collaborative manner, with the host carrying out the final synthesis using microbiome-derived 175 

inputs. For example, a wide range of microbiome-derived carboxylic acids are conjugated to 176 

glycine in the liver and the kidneys to make different acyl-glycines (Figure S4A-D) (Wikoff et al., 177 

2009).  178 

We also examined the host clearance mechanisms of microbiome metabolites, based on arterial-179 

venous gradients across the liver and kidney and levels in the urine. SCFAs and branched-chain 180 

fatty acids were avidly consumed by the liver, consistent with their much greater abundance in the 181 

portal than systemic circulation. Most microbiome-derived metabolites were excreted by the 182 

kidney into the urine, with the notable exception of SCFAs, which are actively reabsorbed (Table 183 

S1). Thus, we establish dietary protein as a major precursor to many microbiome metabolites and 184 

identify host-microbiome interplay in the metabolism of SCFAs, including their renal reabsorption 185 

and use by liver and kidney for the synthesis of acyl-glycines.  186 

Gut bacterial growth is synchronized with host feeding 187 

Thus far, we have reported inputs and outputs of the gut microbiome as a whole. We now shift to 188 

examining the growth and metabolism of specific bacterial genera. To this end, we deployed 189 

proteomics to measure gut microbial peptides and their labeling, focusing on peptide sequences 190 

specific to a single bacterial genus (Figure 4A).  191 

To quantify protein synthesis in different gut microbial genera, we used D2O tracing (Holmes et 192 

al., 2015; O’Brien et al., 2020). To achieve steady-state labeling of body water, we gave mice D2O 193 

by bolus injection followed by mixing it into drinking water. Peptide labeling in the cecal contents 194 

was then measured by proteomics (Figure 4B).  195 

A key technical challenge in using proteomics to read out metabolic activity is the complexity, 196 

arising from natural isotope abundances, of peptide mass spectra. We used liquid chromatography-197 

high resolution mass spectrometry to obtain the full scan (MS1) mass isotope distribution for each 198 

peptide of interest, with MS/MS analysis of the unlabeled form used to determine the peptide’s 199 

identity. We then calculated, based on the mass isotope distribution, the fraction of peptide that 200 

was newly synthesized (𝜃). To this end, first, we calculated the mass isotope distribution of 201 

unlabeled peptides based on natural isotope abundances (“old”). Second, we calculated the 202 

expected mass isotope distribution of a newly-synthesized peptide generated from cecal free amino 203 

acids, whose labeling we experimentally measured by metabolomics. Then, we determined the 204 

fraction of newly synthesized (𝜃) by linear interpolation between the “old” and “newly synthesized” 205 

spectra (Figure 4C).  206 
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For each bacterial genus, we measured the newly synthesized fraction (𝜃) for a minimum of 5 207 

peptides, with abundant gut bacteria yielding 𝜃 for over 100 characteristic peptides. Irrespective 208 

of their intracellular location, different peptides from the same bacterial genus tended to label at a 209 

similar rate, suggesting that the peptide labeling rate largely reflects bacterial growth rate (Figure 210 

4D, S5A). Labeling rate varied across bacterial genera, with a half doubling time ranging from 2.5 211 

h for Akkermansia to 8 h for Lactobacillus, which still markedly exceeded the labeling rate of host 212 

intestinal proteins (> 24 h half doubling time) (Figure 4E-F, Figure S5B).  213 

Our prior analyses revealed that the microbiome is fed substantially by dietary components. 214 

Accordingly, we hypothesized that microbial growth synchronizes with physiological feeding, 215 

which in mice occurs mainly during the nighttime. To assess the diurnal rhythm of gut bacterial 216 

protein synthesis, mice were given D2O for 6 h intervals throughout the diurnal cycle, followed by 217 

proteomic analysis of their cecal contents. Every measured bacterial genus showed greater protein 218 

synthesis during nighttime than daytime (Figure 4G). Thus, gut bacteria synthesize protein in sync 219 

with the physiological feeding patterns of the host. 220 

Preferred carbon sources differ across gut bacteria 221 

Next, we quantitated the carbon feedstocks of different microbes, by combining 13C-nutrient 222 

labeling and proteomics. Each 13C-labeled nutrient (dietary inulin, dietary algal protein, or 223 

circulating lactate) was provided for 24 hours, which is sufficient to achieve steady-state labeling 224 

in the gut bacteria. Our analysis strategy involved two steps: first, we calculated, based on each 225 

genus-specific peptide’s observed mass isotope distribution, its relative 13C-enrichment ( 𝛾 ) 226 

compared to that of cecal free amino acids (Figure 5A).  Mathematically, this calculation is 227 

identical to the calculation of 𝜃 in the D2O case, except here, the tracer is a particular 13C-labeled 228 

nutrient, which unlike D2O is used preferentially by certain bacterial genera. The observed 229 

peptide’s relative 13C-enrichment multiplied by the average contribution of that 13C-tracer to the 230 

gut microbial amino acids pool (𝐿𝐴𝐴_𝑎𝑣𝑔←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡) gives a quantitative measure of the tracer’s 231 

contribution to the observed genus-specific peptide. Averaging across such peptides gives a 232 

fractional contribution of the 13C-labeled nutrient to protein synthesis in a bacterial genus. 233 

Using this method, we measured feedstocks of the bacterial genera that were detected in every 234 

proteomics experiment. We observed marked differences in nutrient preferences across members 235 

of the microbiota. For example, Bacteroides and Clostridium use over four-fold more inulin than 236 

Akkermansia, Muribaculum, or Alistipes (Figure 5B). Overall, bacteria from the phylum 237 

Firmicutes, used more dietary protein than did Bacteroidetes (Firmicutes 0.237  ± 0.052; 238 

Bacteroidetes 0.175 ± 0.031, p = 0.02).  239 
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Akkermansia, which is generally considered a health-promoting gut microbe, used among the least 240 

dietary inulin and protein (Figure 5B-C). In contrast, it used by far the most circulating lactate 241 

from the host (Figure 5D).  242 

We were curious whether these bacterial nutrient preferences predict microbiome composition 243 

changes upon dietary changes. To explore this possibility, we fed mice an inulin-enriched or algal 244 

protein-enriched diet for two days and measured microbiome composition by 16S rRNA 245 

sequencing. Major bacteria genera with a relative abundance > 0.5% in 16S rRNA sequencing 246 

were examined. Bacteroides, the top consumer of 13C-inulin, increased by 4-fold  after high inulin 247 

diet (Figure 5E-G). Clostridium, another high inulin consumer, also increased by 2-fold. Other 248 

genera that use less inulin carbon were either unchanged or slightly decreased. Similar consistency 249 

between microbes’ nutrient preference and relative abundance changes was observed in mice fed 250 

the algal protein-enriched diet (Figure 5H-J). Carbon-source preference measured by proteomics 251 

(𝑓𝑔𝑒𝑛𝑢𝑠←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 ) correlates with abundance change following a diet shift measured by 16S 252 

sequencing, for both the inulin and algal protein conditions (Figure 5G, J). Thus, the nutrient 253 

preferences of different gut bacteria help explain microbiome compositional changes following 254 

dietary manipulations (David et al., 2014).  255 

Firmicutes consume dietary protein while Bacteroidetes consume secreted host protein 256 

Lastly, we turned to the nitrogen source preferences of different gut bacteria, comparing 15N-257 

labeled dietary protein feeding to 15N-urea infusion. The analytical approach was identical to that 258 

employed above for carbon source preferences. Bacterial genera that highly use carbon from 259 

dietary protein also highly use nitrogen from dietary protein, consistent with amino acids from 260 

dietary protein being assimilated intact in bacterial proteomes (Figure 6A, S6A).  261 

Conversely, among members of the phylum Firmicutes, genera preferring urea nitrogen tended to 262 

be avid inulin users, i.e. to synthesize their own amino acids using inulin and urea (Figure 6B, 263 

S6B). Finally, again among Firmicutes, we also saw the expected trade-off where some genera 264 

prefer nitrogen from dietary protein, and others from circulating urea (Figure S6C). The most 265 

intriguing observation, however, was that bacteria from the phylum Firmicutes used more nitrogen 266 

both from dietary proteins and from circulating urea than did Bacteroidetes (Dietary proteins: 267 

Firmicutes 0.263  ± 0.044; Bacteriodetes 0.135 ±  0.006, p = 7.7 × 10−5 ; Urea: Firmicutes 268 

0.076 ± 0.019; Bacteriodetes 0.033 ± 0.012, p = 0.0001) (Figure 6A-B).  269 

The low use of both dietary protein and circulating urea nitrogen by Bacteroidetes raised a key 270 

question: How do Bacteroidetes get nitrogen? It has been shown that some members of gut 271 

microbiome (e.g. Bacteroides and Akkermansia) are capable of digesting host secreted proteins 272 

such as mucins (Berry et al., 2013; Reese et al., 2018). We hypothesized that host secreted proteins 273 
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are a key source of Bacteroidetes nitrogen. To probe this possibility, we performed long-term (36 274 

h) 15N-labeled lysine and arginine infusions to label host proteins in the colon (Figure 6C and 275 

Figure S7A-D). Lysine and arginine do not directly feed the microbiome (Figure 1E) but did 276 

make a discernible contribution after the long-term infusion, consistent with the labeling occurring 277 

via host proteins. Such labeling occurred preferentially in Bacteriodetes peptides (Figure 6D). 278 

Akkermansia, consistent with its mucin degrading capability, is another user of host secreted 279 

proteins. The nitrogen contributions from dietary and secreted host proteins were anti-correlated, 280 

consistent with some gut bacteria preferentially consuming dietary protein, and others host protein 281 

(Figure 6E). Interestingly, bacterial genera with a higher preference for dietary protein, which is 282 

dependent on host feeding, tend to grow more differently between daytime and nightime, while 283 

genera that prefer host secreted proteins, grow at a similar rate throughout a day. (Figure S6D-E). 284 

Thus, dietary proteins and circulating urea are the major nitrogen feedstock of Firmicutes, while 285 

secreted host proteins provide nitrogen to Bacteroidetes. 286 

Discussion 287 

As for most microbial communities, the composition of the gut microbiome is shaped by nutrient 288 

availability. Here we developed quantitative isotope tracing approaches to measure the nutrient 289 

preferences of gut bacteria. In addition to dietary fiber and secreted host proteins, we establish 290 

dietary protein and circulating host lactate, 3-hydroxybutyrate, and urea as important nutrients 291 

feeding gut bacteria. Importantly, we rule out direct contributions from other circulating host 292 

nutrients, like glucose and amino acids, to the colonic microbiome.  293 

A key technical achievement is enabling tracing from different carbon and nitrogen sources into 294 

bacteria-specific peptides, thereby revealing the nutrient preferences of different bacteria within 295 

the complex and competitive gut lumen environment. We find that Firmicutes and Bacteroidetes 296 

differ systematically in their utilization of host secreted protein versus dietary protein: Firmicutes 297 

tend to acquire amino acids from dietary protein, while Bacteroidetes rely more on secreted host 298 

protein (Figure 6F). This may relate to different localization of bacteria within the colon, either in 299 

terms of central versus peripheral (closer to host mucus) or distal versus proximal (closer to 300 

incoming food remnants) (Albenberg et al., 2014; Li et al., 2015; Yasuda et al., 2015).  301 

Within these two major families of gut bacteria, we found marked disparities in the use of dietary 302 

fiber as a carbon source. The most abundant Bacteroidetes’ genus is Bacteroides, and it was the 303 

most avid assimilator of fiber (inulin). In contrast, other types of bacteria in the same phylum 304 

hardly consumed inulin. Likewise, some Firmicutes like Clostridium avidly used fiber, while 305 

others did not. Strikingly, feeding a fiber-enriched diet led to an increased abundance of 306 

Bacteroides and Clostridium, the precise genera that most actively assimilate fiber based on 307 

isotope tracing. 308 
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A similar trend was observed in the case of dietary supplementation with algal protein: Firmicutes, 309 

which actively use such protein, tended to increase in abundance. Algal protein (the only type 310 

commercially available in bulk in 13C-labeled form) may be particularly hard for mammals to 311 

digest. This is reflected in the limited appearance of 13C-labeled amino acids from algal protein in 312 

the portal circulation, and instead extensive passage from the intestine into the colon. This influx 313 

of dietary protein to the microbiome was a major contributor to secreted microbiome metabolites: 314 

dietary algal protein provided a portion of the carbon in the most abundant microbiome products 315 

(e.g., SCFAs) and was the main source of most other microbiome-derived metabolites. An 316 

important future question is whether the nature of dietary protein (e.g. plant or animal-based) 317 

impacts passage through the small intestine to the colonic microbiome and thereby shapes 318 

microbiome composition or metabolite secretion (Madsen et al., 2017; Wali et al., 2021).  319 

Host circulating metabolite levels may also impact microbiome nutrient access and ultimately 320 

composition. Here we show such effects are likely limited to the few host metabolites that 321 

meaningfully penetrate the microbiome: urea, 3-hydroxybutyrate, and lactate. Among them, 322 

lactate was recently shown to feed the gut microbiome in human marathon runners (Scheiman et 323 

al., 2019). Among gut bacteria, Akkermansia most avidly use circulating lactate. Akkermansia are 324 

mucin degraders, and their proximity to the gut epithelial wall may augment their access to lactate 325 

from the host circulation. Akkermansia are more abundant in athletes, and exercise increases their 326 

levels in mice and human (Liu et al., 2017; Munukka et al., 2018). A possible mechanism involves 327 

increased circulating lactate levels following exercise directly feeding Akkermansia. Whether 328 

lactate-induced Akkermansia growth in part mediates beneficial effects of exercise is an important 329 

open question.  330 

Ultimately, manipulating the microbiome requires understanding which nutrients different bacteria 331 

consume, and how such consumption impacts microbiome composition and product secretion. 332 

Through isotope tracing, including proteomic measurements that offer bacterial genus specificity, 333 

we provide foundational knowledge about which nutrients feed the gut microbiome, and which 334 

bacteria prefer which nutrients. Currently, our measurements are limited to young mice, fed typical 335 

chow with or without fiber or algal protein supplementation. Furthermore, they are limited to the 336 

genus level and to genera that we detect by proteomics and/or sequencing. Nevertheless, we cover 337 

many important gut microbiome genera. Moreoever, the methodologies developed here are poised 338 

for broader application, to eventually contribute to the holistic and quantitative understanding of 339 

the diet-microbiome-health connection. 340 

Methods 341 

Mouse gavage and labeled nutrient feeding. Mouse studies followed protocols approved by the 342 

Princeton University Animal Care and Use Committee. Unless otherwise indicated, mice were 343 
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group-housed on a normal light-dark cycle (8:00-20:00) with free access to water and chow. For 344 

the 13C-nutrient gavage experiments, 7-9-week-old male C57BL/6NCrl mice (strain 027; Charles 345 

River Laboratories) were fasted at 9 am and received a 1:2:4 mixture of inulin, protein/amino acids, 346 

and starch (0.5 g kg-1 inulin, 1 g kg-1 protein/amino acids 2g kg-1 starch dissolved in water) at 3 347 

pm via oral gavage with a plastic feeding tube (Instech Laboratories). Food was given back at 8 348 

pm.  349 

For the experiments involving labeled nutrient feeding, the labeled diet was prepared by adding 350 
13C/15N-nutrients to a diet mixture premix (modified from normal diet with reduced protein, inulin, 351 

and starch content, Research diets Inc, D20030303). The final enrichment for each labeled dietary 352 

nutrient was 10% - 25% (with observed labeling corrected by dividing by the fraction dietary 353 

nutrient labeled). The contribution of each dietary nutrient to metabolites is calculated by the 354 

metabolite labeling enrichement normalized to the final enrichment of each labeled dietary nutrient. 355 

All diets shared the same final macronutrient composition (40% starch, 20% protein or amino acids, 356 

7.5% inulin and 2.5% cellulose). Male C57BL/6NCrl mice (7-9-week-old, strain 027, Charles 357 

River Laboratories) were first adapted to a non-labeled diet (of identical composition to the 358 

subsequent labeled diet) for 10 days, and then fed labeled diet for 24 h prior to sacrifice.  359 

For the deuterium water drinking experiment, mice were administered a bolus intraperitoneal 360 

injected of D2O (1.26 % w/w relative to body weight), followed by having ad lib access to 3% 361 

D2O drinking water.   362 

Intravenous infusions. To quantify contribution of circulating nutrients to microbiota metabolism, 363 

9-11-week-old C57BL/6 mice were catheterized in house in the right jugular vein. The mice were 364 

infused with carbon or nitrogen-labeled tracer starting at 3:30 pm without any fasting. Infusion 365 

rate was 0.1 ul/min/g. Infusion solutions are described in Table S3. Overnight (24 h) infusions 366 

both started and finished around 9 am. The contribution of circulating nutrient to each metabolite 367 

is calculated by the metabolite labeling enrichment normalized to the average tracer serum 368 

enrichment throughout 24 hr.   369 

Antibiotics treatment. To deplete the mouse resident microbiome, an antibiotic drinking water 370 

protocol was used. In brief, mice were treated with a cocktail of antibiotics (1 g/L ampicillin, 1 371 

g/L neomycin, 1 g/L metronidazole, and 1 g/L vancomycin) in both their drinking water 14 days. 372 

To make the drinking water more palatable, 5% aspartame was added The effectiveness of 373 

antibiotics treatments were verified by observing much lower SCFAs in the feces by LC-MS.  374 

Sample collection. Systemic blood samples (~6 µl) were collected by tail bleeding. For sampling 375 

from tissue-specific draining veins, a mouse was put under anesthesia and different tissue veins 376 

were exposed, and blood samples were pulled with an insulin syringe (BD insulin syringes, # 377 

SY8290328291) insertion into the vein. Successful isolation of portal vein was confirmed by much 378 
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higher (> 10x) concentrations of SCFAs and secondary bile acids (deoxycholic acid and lithocholic 379 

acid) than systemic vein; hepatic vein was confirmed by much lower secondary bile acids, SCFAs 380 

and higher glucose, 3-hydroxybutyrate levels compared to portal vein. Mouse urine was collected 381 

from the urinary bladder using a syringe. All serum samples were placed on ice without 382 

anticoagulant for 15 min, and centrifuged at 16,000 x g for 15 min at 4 C. 383 

Tissues were harvested by quick dissection and snap freezing (<5 sec) in liquid nitrogen with a 384 

pre-cooled Wollenberger clamp; intestinal contents were removed before clamping. For cecal 385 

content sampling, the mouse cecum was first removed and cut on the surface, then the cecal content 386 

was sequeezed out using a tweezer followed by freeze clamping. Whole liver, intestine, and 387 

intestinal contents were collected and grounded to homogenous powder. To sample fresh feces, 388 

the mouse belly was gently massaged to induce defecation and fresh feces were freeze clamped. 389 

For long-term feces collection, a mouse was transferred to a new cage and mouse fecal pellets on 390 

the bedding were collected every 1~2 h and freeze clamped. Serum, tissue, and feces samples were 391 

kept at -80 °C until further analysis. 392 

16S rRNA gene amplicon sequencing and analysis. Extraction of Bacterial DNA from cecal or 393 

fecal samples was performedusing the Power Soil DNA Isolation kit (QIAGEN). A section of the 394 

16S rRNA gene (~250 bp, V4 region) was amplified, and Illumina sequencing libraries were 395 

prepared from these amplicons according to a previously published protocol and primers 396 

(Caporaso et al., 2012). Libraries were further pooled together at equal molar ratios and sequenced 397 

on an Illumina HiSeq 2500 Rapid Flowcell or MiSeq as paired-end reads. These reads were 2x150 398 

bp with an average depth of ~20,000 reads. Also included were 8 bp index reads, following the 399 

manufacturer’s protocol (Illumina, USA). Pass-Filter reads were generated from raw sequencing 400 

reads using Illumina HiSeq Control Software. Samples were de-multiplexed using the index reads. 401 

The DADA2 plugin within QIIME2 version 2018.6 was used to inferred Amplicon sequencing 402 

variants (ASVs) from the unmerged paired-end sequences (Bolyen et al., 2019; Callahan et al., 403 

2016). The forward reads were trimmed at 150 bp and the reverse reads trimmed at 140 bp, with 404 

all other DADA2 as default. Taxonomy was assigned to the resulting ASVs with a naïve Bayes 405 

classifier trained on the Greengenes database version 13.8, with only the target region of the 16S 406 

rRNA gene used to train the classifier (Bokulich et al., 2018; McDonald et al., 2012). Downstream 407 

analyses were performed MATLAB (Hunter, 2007; McKinney, 2010).  408 

Metabolite extraction. For serum samples, 3 ul serum was added to 90 ul methanol and incubated 409 

on ice for 10 min, followed by centrifugation at 17,000 × g for 10 min at 4°C. The supernatant was 410 

transferred to an MS vial until further analysis. For tissues and feces samples, frozen samples were 411 

first ground at liquid nitrogen temperature with a cryomill (Restch, Newtown, PA). The resulting 412 

tissue powder was extracted with 40:40:20 methanol: acetonitrile: water (40 ul extraction solvent 413 
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per 1 mg tissue) for 10 min on ice, followed by centrifugation at 17,000 x g for 10 min, the 414 

supernatant was transferred to a MS vial until further analysis.  415 

Measurements of metabolites, protein, and polysaccharides. To measure metabolites in serum, 416 

tissue and feces samples, a quadrupole orbitrap mass spectrometer (Q Exactive; Thermo Fisher 417 

Scientific) was coupled to a Vanquish UHPLC system (Thermo Fisher Scientific) with 418 

electrospray ionization and scan range m/z from 60 to 1000 at 1 Hz, with a 140,000 resolution. LC 419 

separation was performed on an XBridge BEH Amide column (2.1×150 mm, 2.5 μm particle size, 420 

130 Å pore size; Waters Corporation) using a gradient of solvent A (95:5 water: acetonitrile with 421 

20 mM of ammonium acetate and 20 mM of ammonium hydroxide, pH 9.45) and solvent B 422 

(acetonitrile). Flow rate was 150 μl/min. The LC gradient was: 0 min, 85% B; 2 min, 85% B; 3 423 

min, 80% B; 5 min, 80% B; 6 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B; 10 min, 424 

50% B; 12 min, 50% B; 13 min, 25% B; 16 min, 25% B; 18 min, 0% B; 23 min, 0% B; 24 min, 425 

85% B; and 30 min, 85% B. Injection volume was 5-10 μl and autosampler temperature was set at 426 

4°C. For cysteine measurement, samples were derivatized before measurement as follows: Serum, 427 

cecal content or feces samples were extracted and centrifuged. To the supernatant, 2 mM N-428 

ethylmaleimide was added and incubated at room temperature for 20 min. The resulting mixture 429 

was transferred to a MS vial. Derivatized cysteine has a m/z at 245.06015 in negative mode.  430 

To quantify the metabolite concentration in serum and tissue samples, either isotope spike-in or 431 

standard spike-in was performed. For isotope spike-in, known concentrations of isotope-labeled 432 

standard were added to the serum or tissues extraction solution, then the concentration was 433 

calculated by the ratio of labeled and unlabeled metabolites. When isotope standard is not available, 434 

a serially diluted non-labeled standard was added, and a linear fitting between measured total ion 435 

count and added concentration of standard was generated. Then, the concentration of endogenous 436 

metabolite was determined by the x intercept of the fitting line.    437 

Starch and inulin were measured by acid hydrolysis and LC-MS. In brief, 5-10 mg sample was 438 

mixed with 10 ul 2 M hydrochloric acid, and samples were incubated at 80°C for 2 h. After cooling 439 

down, the resulting mixture was neutralized with 12 μl saturated sodium bicarbonate, followed 440 

with 88 μl 1:1 acetonitrile: methanol solution. After centrifugation at 17,000 × g for 10 min at 4°C, 441 

the supernatant was transferred to a MS vial. Inulin and starch concentration in samples was 442 

inferred from total ion count of fructose and glucose, respectively.  443 

SCFAs and BCFAs were derivatized and measured by LC-MS. Serum (5 μl) or tissue samples 444 

(~10 mg) were added to 100 μl derivatizing reagents containing 12 mM 1-Ethyl-3-(3-445 

dimethylaminopropyl) carbodiimide, 15 mM 3-Nitrophenylhydrazine hydrochloride acid and 446 

pyridine (2% v/v) in methanol. The reaction was incubated at 4°C for 1 h. Then, the reaction 447 

mixture was centrifuged at 17,000 g for 10 min. 20 μl supernatant was quenched with 200 μl 0.5 448 
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mM beta-mercaptoethanol in 0.1% formic acid water. After centrifugation at 17,000 g for 10 min, 449 

the supernatant was transferred to MS vials until further analysis. The measurement of SCFAs and 450 

BCFAs are performed using the same Q Exactive PLUS hybrid quadrupole-orbitrap mass 451 

spectrometer with different column and LC setup. LC separation was on Acquity UPLC BEH C18 452 

column (2.1 mm x 100 mm, 1.7 5 μm particle size, 130 A˚ pore size, Waters, Milford, MA) using 453 

a gradient of solvent A (water) and solvent B (methanol). Flow rate was 200 μL/min. The LC 454 

gradient was : 0 min, 10% B; 1 min, 10% B; 5 min, 30% B; 11 min 100% B; 14 min, 100% B; 455 

14.5 min 10% B; 22 min 10 % B. Autosampler temperature was 5 °C, column temperature was  456 

60 °C and injection volume was 10 μl. Ion masses for derivatized acetate, propionate, butyrate, 457 

iso-butyrate, valeric acid, isovaleric acid, 2-methylbutyrate, 4-methylvaleric acid were 194.0571, 458 

208.0728, 222.0884, 222.0884, 236.1041, 236.1041, 236.1041, 250.1197 in negative mode, 459 

respectively.  460 

Proteomics sample preparation. Proteomics samples were prepared mostly as previously 461 

described (Gupta et al., 2018; Wühr et al., 2014). Mouse cecal samples (10 mg each) were 462 

dissolved in 400 ul lysis buffer (6M guanidium chloride, 2% cetrimonium bromide, 5 mM 463 

dithiothreitol, 50 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), pH 7.2). 464 

Then the sample mixture was put on ice and sonicated for 10 cycles (30 s on and 30 s off cycle, 465 

amplitude 50%) by a sonicator (Qsonica), followed by centrifugation at 20,000 × g for 20 min at 466 

4 °C. The supernatant was taken and alkylated with 20 mM N-ethylmaleimide for 20 min at room 467 

temperature, 5 mM dithiothreitol was added to quench the excessive alkylating reagents. Proteins 468 

were purified by methanol-chloroform precipitation. The dried protein pellet was resuspended in 469 

10 mM EPPS (N-(2-Hydroxyethyl) piperazine-N’-(3-propanesulfonic acid)) at pH 8.5 with 6 M 470 

guanidine hydrochloride. Samples were heated at 60°C for 15 min and protein concentration was 471 

determined by BCA assay (Pierce BCA Protein Assay Kit, Thermo Scientific). The protein mixture 472 

(30~50 µg) was diluted with 10 mM EPPS pH 8.5 to 2 M GuaCl and digested with 10 ng/µL LysC 473 

(Wako) at room temperature overnight. Samples were further diluted to 0.5 M GuaCl with 10 M 474 

EPPS pH 8.5 and digested with an additional 10 ng/µL LysC and 20 ng/µL sequencing grade 475 

Trypsin (Promega) at 37°C for 16 h. Samples were desalted using a SepPak cartridges (Waters) 476 

and then vacuum-dried and resuspended in 1% formic acid before mass spectrometry analysis.  477 

Proteomics peptide measurement. Samples were analyzed on an EASY-nLC 1200 (Thermo 478 

Fisher Scientific) HPLC coupled to an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher 479 

Scientific) with Tune version 3.3. Peptides were separated on an Aurora Series emitter column (25 480 

cm × 75 μm ID, 1.6 μm C18) (Ionopticks, Australia) and held at 60°C during separation using an 481 

in-house built column oven over 180 min, applying nonlinear acetonitrile gradients at a constant 482 

flow rate of 350 nL/min. The Fusion Lumos was operated in data dependent mode. The survey 483 

scan was performed at a resolution setting of 120k in orbitrap, followed by MS2 duty cycle of 1.5 484 

s. The normalized collision energy for CID MS2 experiments was set to 30%.  485 
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Solvent A consisted of 2% DMSO (LC-MS-grade, Life Technologies), 0.125% formic acid (98%+, 486 

TCI America) in water (LC-MS-grade, OmniSolv, VWR), solvent B of 80% acetonitrile (LC-MS-487 

grade, OmniSolv, Millipore Sigma), 2% DMSO and 0.125% formic acid in water. The following 488 

120 min-gradient with percentage of solvent B were applied at a constant flow rate of 350 nL/min 489 

after thorough equilibration of the column to 0% B: 0% – 6% in 5 min; 6 – 25% in 160 min; 25% 490 

–100% in 10 min; 100% for 5 min. For electrospray ionization, 2.6 kV were applied between 491 

minutes 1 and 113 (or minutes 1 and 83 for fractionated samples) of the gradient through the 492 

column. To avoid carry-over of peptides, 2,2,2-trifluoroethanol (>99% Reagent plus, Millipore 493 

Sigma) was injected in a 30 min wash between each sample. 494 

Proteomics data analysis. The data was analyzed using GFY software licensed from Harvard 495 

(Nusinow et al., 2020). Thermo Fisher Scientific. raw files were converted to mzXML using 496 

ReAdW.exe. MS2 spectra assignment was performed using the SEQUEST algorithm v.28 (rev. 497 

12) by searching the data against the combined reference proteomes for Mus Musculus, Bos Taurus, 498 

and all the abundant bacterial families detected in 16S rRNA sequencing (Bacteroidaceae, 499 

Porphyromonadaceae, Prevotellaceae, Rikenellaceae, Muribaculaceae, Lachnospiraceae, 500 

Ruminococcaceae, Erysipelotrichaceae, Oscillospiraceae, Clostridiaceae, Eubacteriaceae, 501 

Lactobacillaceae and Verrucomicrobiaceae) acquired from Uniprot on Jan 2021 (SwissProt + 502 

Trembl) along with common contaminants such as human keratins and trypsin. The target-decoy 503 

strategy was used to construct a second database of reverse sequences that were used to estimate 504 

the peptide false discovery rate (Elias and Gygi, 2007). A 20 ppm precursor ion tolerance with the 505 

requirement that both N- and C- terminal peptide ends are consistent with the protease specificities 506 

of LysC and Trypsin was used for SEQUEST searches, two missed cleavage was allowed. NEM 507 

was set as a static modification of cysteine residues (+125.047679 Da). An MS2 spectral 508 

assignment false discovery rate of 0.5% was achieved by applying the target decoy database search 509 

strategy. Linear Discriminant analysis was used for filtering with the following features: 510 

SEQUEST parameters XCorr and unique ΔXCorr, absolute peptide ion mass accuracy, peptide 511 

length and charge state. Forward peptides within three standard deviations of the theoretical m/z 512 

of the precursor were used as positive training set. All reverse peptides were used as negative 513 

training set. Linear Discriminant scores were used to sort peptides with at least seven residues and 514 

to filter with the desired cutoff. Furthermore, we performed a filtering step on the protein level by 515 

the “picked” protein FDR approach (Savitski et al., 2015). Protein redundancy was removed by 516 

assigning peptides to the minimal number of proteins which can explain all observed peptide, with 517 

above-described filtering criteria. 518 

To quantify the intensities of all the isotopic peaks of the peptides, we used raw intensity. Missed 519 

cleavage peptides (more than one K or R in the peptide) and low signal to FT-noise peptides (M0 520 

S/N < 20) were removed. Peptide phylogenetic assignment was performed using Unipept (Gurdeep 521 
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Singh et al., 2019), ‘Equate I and L’ and ‘Advanced missed cleavage handling’ were not selected. 522 

Only peptides that are specific at a genus level were used for further analysis.  523 

Quantification of newly-synthesized fraction of peptide. To determine the newly synthesized 524 

fraction of a bacterial peptide in D2O drinking water experiment, we first measured the cecal 525 

content free amino acids deuterium labeling pattern using metabolomics. Then, for each peptide, 526 

we simulated the expected isotope envelope pattern if the peptide were old, i.e., unlabeled with 527 

deuterium (𝐼𝑜𝑙𝑑), versus if it were newly synthesized by taking up free amino acids from the cecal 528 

content (𝐼𝑛𝑒𝑤). 𝐼𝑜𝑙𝑑 was calculated based on the peptide’s molecular formula and 13C, 15N, 2H, 17O, 529 
18O, 32S, 33S and 36S natural abundance.  𝐼𝑛𝑒𝑤 was calculated based on the peptide’s sequence and 530 

experimentally observed labeling of the corresponding cecal free amino acids (after natural isotope 531 

correction), and the natural isotope abundance of the unlabeled atoms in the peptide’s formula. 532 

The simulation of expected peptide isotope distribution and fitting was performed using a 533 

MATLAB code: https://github.com/xxing9703/pepMID_simul. Exact mass isotopic peaks with 534 

appreciable abundances were bundled by nominal mass into fraction M+0, M+1, ...M+n, 535 

constituting the final simulated spectrum. A least square fit was used to find the scalar 𝜃 that best 536 

fit the measured peptide isotopic distribution (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) to a linear combination of 𝐼𝑜𝑙𝑑 and 𝐼𝑛𝑒𝑤: 537 

𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = 𝐼𝑜𝑙𝑑 × (1 − 𝜃) + 𝐼𝑛𝑒𝑤 × 𝜃 538 

The root mean square error was determined for each peptide fitting, and any fitting with a root 539 

mean square error > 1% was removed. For genus-level turnover quantification, only genera with 540 

more than two measurements were kept in the analysis, with the median value across peptides 541 

reported.  542 

Quantification of contribution of labeled nutrient to peptide. To determine the contribution of 543 

a 13C- or 15N-labeled nutrient to a bacterial peptide, similar to the above approach, we first 544 

measured the cecal content free amino acids 13C- or 15N-labeling using metabolomics. Then, for 545 

each peptide, we simulated the expected isotope envelope pattern if the peptide were unlabeled 546 

(𝐼𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑) versus if it were synthesized from free cecal amino acids  (𝐼𝑓𝑟𝑒𝑒). A scalar 𝛾 (analogous 547 

to 𝜃 above) can then be determined by fitting the measured peptide isotope distribution  (𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) 548 

to a linear combination of 𝐼𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 and 𝐼𝑓𝑟𝑒𝑒 .  Note that 𝛾 will exceed 1 when a bacterial genus 549 

uses a particular nutrient in excess of that nutrient contribution’s to cecal free amino acids. Because 550 

the 13C- and 15N-labeling patterns are simpler than the D2O labeling patterns, in lieu of carrying 551 

out this fitting, we instead determined 𝛾 (with the same conceptual and mathematical meaning) 552 

using simple algebraic equations. 553 

Specifically, we measured 𝛾 for each peptide as follows: 554 
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𝛾 =
𝜑𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜑𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑

𝜑𝑓𝑟𝑒𝑒 − 𝜑𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
 555 

where (with the exception of 13C-protein feeding data, discussed immediately below) 𝜑 is the 556 

average number of extra neutrons in a given peptide (or simulated peptide), relative to the M+0 557 

form.  This was calculated based on the experimentally observed (or simulated, as above) fraction 558 

of M+0, M+1, M+2, and M+3, which account for > 90% of the isotopes for each peptide (with 559 

more heavily labeled forms too low abundance and noisy to contribute productively to the 560 

measurements):  561 

𝜑 =
∑ 𝑖 ∙ 𝑀𝑖

3
𝑖=0

∑ 𝑀𝑖
3
𝑖=0

 562 

For the 13C-protein feeding experiments, the most readily detected labeled forms involve 563 

incorporation of a single midsized U-13C-amino acid, which manifests as M+5 or M+6 peptide 564 

labeling. Other isotopic forms were sufficiently noisier, as to render their inclusion unhelpful. 565 

Accordingly, we calculated 𝛾 based on 𝜑′: 566 

𝜑′ =
𝑀5 + 𝑀6

𝑀0 + 𝑀5 + 𝑀6
 567 

The above equations give nearly identical values for 𝛾 as fitting (as done to determine 𝜃).  568 

For genus-level measurements of feedstock contributions, only genera with more than 3 peptides 569 

measured per mousewas kept in the analysis, with the median value across peptides reported as 570 

𝛾𝑔𝑒𝑛𝑢𝑠. Only genera that were consistently detected in proteomics, and the family of that genera 571 

detected (>0.5%) in 16S rRNA sequencing were analyzed. The product of 𝛾𝑔𝑒𝑛𝑢𝑠  and the 572 

contribution of each nutrient to cecal free amino acids (𝐿𝐴𝐴_𝑎𝑣𝑔←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡) was used to determine 573 

the contribution of each nutrient to bacterial genus (𝑓𝑔𝑒𝑛𝑢𝑠←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡): 574 

𝑓𝑔𝑒𝑛𝑢𝑠←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 = 𝛾𝑔𝑒𝑛𝑢𝑠 × 𝐿𝐴𝐴_𝑎𝑣𝑔←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 575 

where the contribution of each nutrient to bacterial protein pool (𝐿𝐴𝐴_𝑎𝑣𝑔←𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡) was calculated 576 

as the average labeling across amino acids, weighted based on their abundance in that genus’ 577 

protein and corrected for fraction of the nutrient interest labeled (𝑇): 578 

𝐿𝐴𝐴_𝑎𝑣𝑔←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 =
∑ 𝑓𝐶𝑒𝑐𝑎𝑙_𝐴𝐴←𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 × 𝑤%𝐴𝐴,𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎

𝑇
⁄  579 
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with 𝑤%𝐴𝐴,𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎 taken from literature (Purser and Buechler, 1966).  580 

Statistical analysis. A two-tailed, unpaired student’s t-test was used to calculate P values, with 581 

P<0.05 used to determine statistical significance.  582 

Author contributions and information. X.Z., and J.D.R came up with general approach and X.Z. 583 

performed most of the experiments and data analysis. C.J. worked intensively with X.Z. to develop 584 

the experimental strategy. M.W. designed and enabled the proteomic measurements. X.X. wrote 585 

the MATLAB code. M.G., F.C.K., and M.D.N. contributed to proteomics method development. 586 

J.G.L. and M.S.D. provided microbiome expertise and performed 16S rRNA sequencing. A.R. 587 

assisted with isotope tracing. W.L. performed ammonia measurement. X.Z., C.J., and J.D.R. wrote 588 
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 878 
Figure 1. Microbiome consumes dietary fiber and protein (legend on next page) 879 
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Figure 1. Microbiome consumes dietary fiber and protein. 880 

(A) Composition of the measured portal microbial metabolome. The pie charts show the relative 881 
molar abundance of different gut microbiota-associated metabolites in mice (N = 6 mice).  882 

(B) Experimental scheme. Mice received an oral gavage of 4:2:1 starch: protein (or free amino acids): 883 
inulin by weight. In each dietary condition, one component was 13C-labeled. After gavage of the 884 
labeled diet, tissue and serum metabolite labeling were measured over time by LC-MS. 885 

(C) Dietary starch feeds the host, while dietary inulin feeds the microbiome. The data shows 886 
concentrations of labeled carbons in hexose and acetate in portal circulation (mean ± s.e., N = 3 887 
mice). 888 

(D) Inulin is a major microbiome feedstock. Heatmap shows the percentage of labeled carbon atoms 889 
in the indicated metabolites in cecal content. Each data point is median of N = 3 mice.  890 

(E) Dietary amino acids feed the host while dietary algal protein feeds the microbiome. The data 891 
shows concentrations of labeled carbons in valine and acetate in portal circulation (mean ± s.e., N 892 
= 3 mice). 893 

(F) Protein but not free amino acids are a major microbiome feedstock. Heatmap shows the 894 
percentage of labeled carbon atoms in the indicated metabolites in cecal content. Each data point 895 
is median of N = 3 mice.  896 

 897 

 898 
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Table 1. Absolute concentrations and sources of microbiota-associated metabolites. 899 

Data are from ad lib fed state (ZT0); for ad lib fasted state (ZT12), see Supplementary Table S1. Absolute 900 
concentration is mean, N = 5 mice. Portal/systemic = fold-change in concentration between the portal vein 901 
and tail vein (median, N = 5 mice). Abx/Conv refers to fold-change in portal blood concentration between 902 
mice treated with antibiotics cocktail versus not (median, N = 5 mice/group). Source bar indicates the 903 
relative contribution to the indicated metabolite from dietary inulin, algal protein and circulating lactate 904 
(based on isotope tracing). Percentages indicate quantitative relative contributions from those nutrients 905 
(median, N = 4). Numbers typically add up to less than 100%, as other sources (e.g. mucins) contribute. 906 
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 907 
Figure 2. Circulating lactate and 3-hydroxybutyrate feed the gut microbiome. 908 

(A) Schematic of intravenous infusion of isotope-labeled nutrients to identify circulating metabolites 909 
that feed gut microbiome. 910 

(B) Circulating lactate rapidly enters the feces. Mice were infused with 13C-lactate and serum and fresh 911 
feces enrichment were compared. Mean±s.e. N = 3. 912 

(C) Circulating citrate does not enter the feces. As in (B), for 13C-citrate. 913 

(D) Passage of circulating 13C-labeled nutrients into the feces. Mice were infused with labeled nutrients 914 
for 2.5 h, and labeling fraction in feces was normalized to labeling fraction in serum. Mean±s.e.    915 
N = 3 except for lactate (N = 8) and 3-hydroxybutyrate (N = 7).  916 

(E) Passage of circulating 15N-labeled nutrients into the feces. As in (D), for 15N-lableing.  Mean±s.e.    917 
N = 3 except for urea (N = 4) and ammonia (N = 5). 918 
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 919 

 920 

 921 
Figure 3. Quantitative analysis of dietary and circulating nutrient contributions to gut microbiome.  922 

(A)  Experimental design. Mice were fed chow containing 13C-protein, 13C-inulin, 13C-fatty acids, or 15N-923 
protein for 24 h. Alternatively, mice were intravenously infused with 13C-lactate, 13C-3-hydroxybutyrate or 924 
15N-urea for 24 h. The labeling of cecal content metabolites was analyzed by LC-MS.  925 

(B) Contribution of dietary and circulating nutrients to carbohydrate fermentation pathways in gut 926 
microbiome. Mean ± s.e. N = 4. 927 

(C) Contribution of dietary and circulating nutrients to cecal amino acid carbon. The names of essential 928 
amino acids (EAA) are written in blue and non-essential amino acids (NEAA) in black. Mean ± s.e. N = 4. 929 

(D) Contribution of dietary and circulating nutrients to cecal amino acid nitrogen. As in (C), for nitrogen. 930 

(E) Positive correlation, across amino acids in the cecal contents, of carbon contribution from dietary inulin 931 
and nitrogen contribution from circulating urea. Mean ± s.e. N = 4. 932 
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 933 

Figure 4. Growth rate of different gut bacterial genera quantified by isotope tracing.  934 

(A)  Experimental approach for isotope tracing into specific gut bacteria. Only peptides that are specific to 935 
a particular bacterial genus were examined.  936 

(B) Growth rate quantification using D2O. Mice received D2O by i.p. injection followed by D2O drinking 937 
water and cecal content labeling was measured over time by proteomics and metabolomics.  938 

(C) Calculation of newly synthesized peptide fraction (𝜃). The experimentally observed peptide mass 939 
isotope distribution was fit to a linear combination of unlabeled peptide (“old,” heavy forms from natural 940 
isotope abundance) and newly synthesized peptide (“new,” heavy forms from isotope labeling pattern of 941 
free cecal amino acids and from natural isotope abundance).  942 

(D) Different cellular compartments from the same bacterial genus show similar labeling rate. 943 

(E) Genus-specific growth rates were determined by a single exponential fitting, as a function of time, of 𝜃 944 
(mean across both different peptides measured from that genus and replicate mice). Mean±s.e. N=5 mice 945 
for each time point. 946 

(F) Bacterial replication half time of different gut bacteria. Data are exponential fits ±s.e.  947 

(G) The gut bacteria synthesize protein in sync with the physiological feeding patterns of the host. The 948 
figure shows the average newly synthesized peptide fraction (𝜃) for different gut bacterial genera after 949 
D2O labeling during daytime vs nighttime. Each line connects the daytime and nighttime measurements 950 
for one genus. Mean, N = 5 mice for daytime and for nighttime.  951 

 952 

 953 
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 954 

Figure 5. Preferred carbon sources differ across gut bacteria (legend on next page). 955 
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Figure 5. Preferred carbon sources differ across gut bacteria 956 

(A) Calculation of peptide relative 13C-enrichment (𝛾) and carbon contribution from the tracer to a bacterial 957 
genus (fgenusnutrient). First, the experimentally observed peptide mass isotope distribution was fit to a linear 958 
combination of unlabeled peptide (heavy forms from natural isotope abundance) and a peptide made from 959 
free cecal amino acids (heavy forms from isotope labeling pattern of free cecal amino acids and from natural 960 

isotope abundance), yielding 𝛾 . Then, fgenusnutrient was determined by correcting for the fractional 961 
contribution of that tracer to the cecal free amino acid pools. 962 

(B) Carbon contribution of dietary inulin across bacterial genera. Mean±s.e. N=4 mice. 963 

(C) Carbon contribution of dietary algal protein across bacterial genera. Mean±s.e. N=6 mice. 964 

(D) Carbon contribution of circulating lactate across bacterial genera. Mean±s.e. N=7 mice. 965 

(E) Experimental scheme of high-inulin diet feeding followed by 16S ribosomal RNA sequencing. 966 

(F) Genus-level microbiota composition changes after high-inulin diet. The genera increased after high-967 
inulin diet prefer inulin in (B). Mean±s.e. N=3 mice. *P<0.05 and **P<0.01 by two-sided Student’s t-test. 968 

(G) Correlation between genera abundance changes and carbon-source preference.  969 

(H- J) As in (E - G), for algal protein-supplemented diet. 970 
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 987 

Figure 6. Firmicutes favor dietary protein while Bacteroidetes prefer secreted host protein 988 

(A) Nitrogen contribution of dietary algal protein across bacterial genera. Mean±s.e. N=6 mice. 989 

(B) Nitrogen contribution of circulating urea across bacterial genera. Mean±s.e. N=6 mice. 990 

(C) Experimental schematic of long-term 15N-lysine and 15N-arginine infusion to probe the contribution of 991 
secreted host proteins to different bacterial genera.  992 

(D) Nitrogen contribution of secreted host proteins across bacterial genera. Mean±s.e. N=5 mice. 993 

(E) Negative correlation between 𝑓𝑔𝑒𝑛𝑢𝑠←𝑠𝑒𝑐𝑟𝑒𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑁 and 𝑓𝑔𝑒𝑛𝑢𝑠←𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑁 . 994 

(F) Summary of carbon and nitrogen inputs to different gut bacteria. Firmicutes prefer dietary carbon 995 
sources (fiber and protein) and nitrogen from host circulating urea. Bacteroidetes heavily use dietary fiber, 996 
while using on host secreted proteins for nitrogen. Verrucomicrobia prefers host secreted nutrients, both 997 
protein and circulating small molecules (lactate, urea). 998 
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 999 

Figure S1. Microbiome consumes dietary fiber and protein. 1000 

(A) Composition of the measured cecal microbial metabolome. The pie charts show the molar 1001 
abundance of different gut microbiota-associated metabolites (N = 6 mice).  1002 

(B) Heatmap showing the percentage of labeled carbon atoms in the indicated metabolites in portal 1003 
circulation, following gavage of 4:2:1 starch: protein (or free amino acids): inulin, with the 1004 
indicated nutrient labeled. Each data point is median of N = 3 mice.  1005 

(C) Metabolic fate of inulin and starch. Stacked bars show the fraction of gavaged inulin and starch 1006 
that is converted into each of the indicated metabolic products, with the undigested fraction being 1007 
excreted in the feces (mean ± s.e., N = 3 mice).  1008 
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(D) Undigested carbohydrate in the feces. Graph shows the fraction of labeled hexose after cecal 1009 
content hydrolysis, 12 h following gavage as above (mean ± s.e., N = 3 mice). 1010 

(E) Heatmap showing the percentage of labeled carbon atoms in the indicated amino acids in portal 1011 
circulation, following gavage of 4:2:1 starch: protein (or free amino acids): inulin, with the 1012 
indicated nutrient labeled. Each data point is median of N = 3 mice.  1013 

(F) As in (E), for microbiota-associated metabolites.  1014 
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 1034 

 1035 

Figure S2. Circulating ammonia contributes to microbiota metabolism via circulating urea. 1036 

(A)    Normalized labeling of serum urea, ammonia and cecal amino acids after 15N-urea infusion (mean± 1037 
s.e., N = 4 mice). Feces labeling fraction is normalized to serum infused tracer (urea) labeling fraction. 1038 

(B)  As in (A), for 15N-ammonia infusion (mean± s.e., N = 5 mice), 1039 

(C)        Model of direct contribution calculation from circulating urea and ammonia to fecal amino acids. 1040 

(D)        Direct contributions of circulating urea and ammonia to cecal amino acids (mean± s.e., N = 4 1041 
mice). 1042 
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 1048 

Figure S3. Quantitative analysis of dietary and circulating nutrient contributions to gut 1049 
microbiome metabolism.   1050 

(A) Heat maps showing the contribution of dietary or circulating nutrients to cecal metabolites. For 1051 
experimental design, see Figure 3. N = 4 mice. 1052 

(B) Amino acids synthesized in the gut microbiome, stay in the microbiome, as urea contributes to 1053 
microbiome amino acids but not host circulating amino acids. Mean ± s.e. N = 4 mice. 1054 
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 1055 

 1056 

Figure S4. Liver and kidney use circulating glycine to synthesize acyl-glycines. 1057 

(A) Experimental design. Mice were intravenously infused with [U-13C]glycine for 2.5 h and tissue 1058 
and serum glycine and acyl-glycine labeling were measured. 1059 

(B) Circulating acyl-glycines are made from circulating glycine. Mean ± s.e. N = 4 mice.  1060 
(C) Tissue phenylpropionylglycine labeling (normalized to circulating glycine labeling). Mean ± s.e. 1061 

N = 4 mice. 1062 
(D) Tissue butyrylglycine labeling (normalized to circulating glycine labeling). Mean ± s.e. N = 4 1063 

mice. 1064 
 1065 
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 1078 

Figure S5. Single exponential fit of newly synthesized fraction of microbial peptides over time.  1079 

(A) Different cellular compartments from the same bacterial genus show similar labeling rate. 1080 

(B) Single exponential fit was applied to determine genus-level microbial turnover. Data are mean ± s.e. 1081 
N = 5 mice. 1082 
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Figure S6. Correlation analysis of nutrient preferences across different gut bacterial genera. 1091 

(A) Positive correlation between 𝑓𝑔𝑒𝑛𝑢𝑠←𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝐶 and  𝑓𝑔𝑒𝑛𝑢𝑠←𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑁. 1092 

(B) Positive correlation between 𝑓𝑔𝑒𝑛𝑢𝑠←𝑖𝑛𝑢𝑙𝑖𝑛 𝐶 and  𝑓𝑔𝑒𝑛𝑢𝑠←𝑢𝑟𝑒𝑎 𝑁 in Firmicutes. 1093 

(C) Negative correlation between 𝑓𝑔𝑒𝑛𝑢𝑠←𝑢𝑟𝑒𝑎 𝑁 and 𝑓𝑔𝑒𝑛𝑢𝑠←𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑁 in Firmicutes. 1094 

(D) Negative correlation between 
𝜃𝑛𝑖𝑔ℎ𝑡

𝜃𝑑𝑎𝑦
⁄ and  𝑓𝑔𝑒𝑛𝑢𝑠←𝑠𝑒𝑐𝑟𝑒𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑁. 1095 

(E) Positive correlation between 
𝜃𝑛𝑖𝑔ℎ𝑡

𝜃𝑑𝑎𝑦
⁄ and  𝑓𝑔𝑒𝑛𝑢𝑠←𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑠 𝑁. 1096 

 1097 

 1098 

 1099 

 1100 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 26, 2022. ; https://doi.org/10.1101/2022.01.25.477736doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.25.477736
http://creativecommons.org/licenses/by/4.0/


 1101 

 1102 

Figure S7. Host secreted proteins are synthesized from host circulating amino acids. 1103 

(A) Experimental design. Mice were infused with 13C-lysine and 13C-arginine and mouse colon protein 1104 
was analyzed by proteomics.  1105 

(B) MUC2 labeling (multiple different MUC2 peptides). N = 3 mice. 1106 

(C) MUC13 labeling (multiple different MUC13 peptides). N = 3 mice. 1107 

(D) Single exponential fit of labeling fraction of MUC2 and MUC13 over time. Mean±s.e. N = 3 mice. 1108 
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