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SUMMARY
Great progress has been made in understanding gut microbiomes’ products and their effects on health and
disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quanti-
tatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to
microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metab-
olites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or
amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into
genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in
the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host
lactate. Such preferences correlate with microbiome composition changes in response to dietary modifica-
tions. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the
ingested nutrients.
INTRODUCTION

The gut microbiome possesses an enormous diversity of en-

zymes, exceeding the number in mammals’ genomes by more

than 100-fold (Qin et al., 2010). This enzymatic capacity enables

the processing of incoming dietary nutrients into a broad spec-

trumofmicrobial metabolites. Someof these reach the host circu-

lation at substantial concentrations (Lai et al., 2021; Quinn et al.,

2020).Microbial metabolites can play important roles in host path-

ophysiology. For example, short-chain fatty acids (SCFAs; ace-

tate, propionate, and butyrate) (Dalile et al., 2019; Koh et al.,

2016), trimethylamine N-oxide (Tang et al., 2013), secondary bile

acids (Arab et al., 2017; Funabashi et al., 2020), indole-3-propio-

nate (Wikoff et al., 2009), and imidazole propionate (Koh et al.,

2018) affect immune maturation (Campbell et al., 2020; Hang

et al., 2019), insulin sensitivity (Koh et al., 2018), cancer growth

(Garrett, 2015; Yoshimoto et al., 2013), and cardiovascular dis-

ease (Nemet et al., 2020; Wang et al., 2011).

Both to replicate themselves and to release metabolic prod-

ucts, gut bacteria require nutrient inputs. These come in forms
C

including ingested food, host-synthesized gut mucus (Desai

et al., 2016; Sicard et al., 2017), and host circulating metabolites

(Scheiman et al., 2019). The availability of dietary nutrients to gut

microbiota depends on the extent of host absorption: nutrients

that are absorbed in the small intestine, like starch, are not avail-

able to the colonic microbiome. In contrast, nutrients that are

poorly digested in the upper gastrointestinal tract, like fiber,

can be key microbiome feedstocks (Lund et al., 2021; Wong

and Jenkins, 2007).

Isotope tracing enables quantitative measurement of the in-

puts to metabolites and biomass. Studies employing radioactive

tracers defined the basics of mammalian metabolism (Wolfe,

1984). Recent work has increasingly relied on stable isotope

tracers coupled to mass spectrometry detection, which enables

the measurement of labeling in specific downstream products

(Fernández-Garcı́a et al., 2020; McCabe and Previs, 2004).

This approach has revealed fundamental features of host meta-

bolism, such as circulating lactate being a major TCA fuel (Fau-

bert et al., 2017; Hui et al., 2017). In addition, it has provided

important insights into host-microbiome metabolic interplay.
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For example, it revealed that dietary fructose is processed by the

microbiome into acetate, which fuels hepatic lipogenesis (Jang

et al., 2018; Zhao et al., 2020).

In principle, stable isotope tracing coupled to mass spectrom-

etry can also be applied to determine the metabolic inputs to

specific microbes, based on measuring labeling in bacteria-spe-

cific peptide sequences (Berry et al., 2015; Holmes et al., 2017;

Oberbach et al., 2017; Reese et al., 2018; Zhang et al., 2016a,

2016b). By infusing nitrogen-labeled threonine to label host

mucus, investigators were able to compare the contribution of

dietary versus mucus protein to the gut microbiome and

observed a shift toward more mucus contribution in mice that

are fed a low-protein diet (Holmes et al., 2017).

Here, we perform a large-scale, quantitative assessment of

the metabolic inputs to the gut microbiome and its products.

We examine the contributions from dietary starch, fiber, and pro-

tein and the contribution from host mucus. We also examine

most major circulating host nutrients, finding that lactate,

3-hydroxybutyrate, and urea stand out for passing from the

host to the gut microbiome. Based on the measurement of

bacteria-specific peptide sequences, we assess the nutrient

preferences of different bacterial genera and show that these

preferences align with microbiome composition changes in

response to an altered diet.

RESULTS

Microbiome consumes less digestible dietary
components
A major mechanism by which the microbiome may impact host

physiology is via secreted metabolic products. We measured,

in the portal and systemic circulation and the cecal contents,

the absolute concentrations ofmore than 50metabolites charac-

terized in the literature as microbiome-derived (Campbell et al.,

2020; De Vadder et al., 2014; Han et al., 2021; Hang et al.,

2019; Koh et al., 2018; Mager et al., 2020; Ridlon et al., 2014;

Wikoff et al., 2009) (Figures S1A and S1B; Tables 1 and S1).

Most were elevated in the portal circulation relative to systemic

blood, and all but two (inosine and N-acetyl-tryptophan, which

are apparently mainly derived from the host) were depleted by

antibiotics treatment.

The dominant excreted products on a molar basis (0.4–2 mM

in the portal blood) are SCFAs. Other relatively abundant micro-

biome products (10–30 mM) are aromatic amino acid fermenta-

tion products (phenol, indoxyl sulfate, and 3-phenylpropionate)

and branched-chain fatty acids (valerate, isovalerate,

4-methylvalerate, isobutyrate, and 2-methylbutyrate). Primary

bile acids, while present in the portal circulation at up to �10

mM concentration, are produced by the host and accordingly

were not included in Table 1. Secondary bile acids, which are

produced from primary bile acids by themicrobiome, were lower

in absolute concentration, with the most abundant being taur-

oursodeoxycholic acid (3 mM in portal circulation).

To probe the dietary inputs to gut microbial products, we

began by feeding mice via oral gavage, starch (readily digestible

glucose polymer) and inulin (slowly digestible fructose polymer,

i.e., soluble fiber) (Figure S1C). Following 13C-starch gavage,

labeled glucose, lactate, and alanine quickly appeared in the
3442 Cell 185, 3441–3456, September 1, 2022
portal circulation and accounted for most starch carbons

(�75%) (Figures S1D–S1I) (Jang et al., 2018). In contrast, after
13C-inulin gavage, substantial labeled fructose, glucose, lactate,

and alanine were not observed, and instead labeled portal me-

tabolites slowly appeared in the form of SCFAs, with �40% of

inulin carbons becoming SCFAs and the remainder being undi-

gested and excreted in the feces. Moreover, dietary inulin, but

not starch, extensively labeled glycolytic and TCA intermediates

and amino acids in the cecal content.

We next carried out similar experiments, comparing the

gavage of a free amino acid mixture with algal protein, both uni-

formly 13C-labeled (Figure S1C). The free amino acids resulted in

the rapid appearance of labeled amino acids in portal circulation,

whereas the algal protein substantially labeled amino acids

within the cecal contents (Figures S1J–S1M). Moreover, the algal

protein copiously labeled microbiome-derived portal vein me-

tabolites: SCFAs, branched-chain fatty acids, and aromatics

(indole, indole-3-propionate, and 3-phenylpropionate). Thus,

poorly digestible carbohydrates and protein feed the micro-

biome directly and the host indirectly via microbiome-derived

products.

Few circulating metabolites reach the microbiome
Next, we examined the possibility that nutrients in host circula-

tion feed the gut microbiota. We infused deuterated water and

eighteen major circulating nutrients (13C-labeled) into the sys-

temic circulation of pre-catheterized mice (Figure 1A). The

infusion rates were selected to achieve modest but readily

measurable labeling without substantially perturbing circulating

concentrations. Circulating labeling reached a steady state by

2.5 h, at which time we collected serum and feces to quantitate

the carbon contributions of each circulating nutrient to the

corresponding fecal metabolites. Upon intravenous infusion of
13C-lactate, fecal lactate labeled rapidly (Figure 1B). Most

infused circulating nutrients, however, did not penetrate the

feces (Figures 1C and 1D). Indeed, while water fully exchanged

with the feces, among abundant circulating carbon carriers,

only lactate and 3-hydroxybutyrate penetrated. Glucose, amino

acids, TCA intermediates, and fatty acids did not. Both lactate

and 3-hydroxybutyrate are substrates of monocarboxylate

transporters (MCTs), which are highly expressed in the

colonic epithelium (Halestrap and Price, 1999, p. 1). Pharmaco-

logical MCT inhibition prevented lactate from penetrating the

feces (Figure 1E). Thus, in contrast to most host circulating me-

tabolites, which do not reach the colonic microbiome, MCTs

render circulating lactate and 3-hydroxybutyrate accessible to

gut microbes.

Circulating urea is a microbiome nitrogen source
In addition to carbon, nitrogen is a fundamental constituent of all

living cells. To assess nitrogen sources of the gut microbiome,

we infused twelve abundant circulating nutrients in 15N-labeled

form. Nitrogen from circulating urea and ammonia, but not amino

acids, penetrates the feces and contributes to microbiome

amino acids and ammonia (Figures 1F, S2A, and S2B). Urea us-

age by themicrobiome involves its re-conversion to ammonia via

the enzyme urease, which is expressed by a subset of gut

microbes (Mora and Arioli, 2014; Ni et al., 2017), and gnotobiotic



Table 1. Absolute concentrations and sources of microbiota-associated metabolites

Data are from ad lib fed state (ZT0); for ad lib fasted state (ZT12), see Table S1. Absolute concentration is mean, n = 5 mice. Portal/systemic = fold

change in concentration between the portal vein and tail vein (median, n = 5 mice). Abx/Conv refers to fold change in portal blood concentration be-

tween microbiome-depleted (antibiotics-treated) versus untreated (conventional) mice (median, n = 5 mice/group). Source bar indicates the relative

contribution to the indicatedmetabolite from dietary inulin, algal protein, and circulating lactate (based on isotope tracing); bile acids are shown in gray.

Percentages indicate quantitative relative contributions from those nutrients (median, n = 4). Numbers typically add up to less than 100%, as other

sources (e.g., mucins) contribute. See also Figures S1 and S4 and Table S1.
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Figure 1. Circulating lactate, 3-hydroxybutyrate, and urea feed the gut microbiome

(A) Schematic of intravenous infusion of isotope-labeled nutrients to identify circulating metabolites that feed gut microbiome.

(B) Circulating lactate rapidly enters the feces. Mice were infused with 13C-lactate, and serum and fresh feces enrichment was compared. Mean ± SE, n = 3.

(C) Circulating citrate does not enter the feces. As in (B), for 13C-citrate. Mean ± SE, n = 3.

(D) Passage of circulating 13C-labeled nutrients into the feces. Mice were infused with labeled nutrients for 2.5 h, and labeling fraction in feces was normalized to

labeling fraction in serum. Blue, serum labeling; orange, fecal labeling. Mean ± SE, n = 3 except for lactate (n = 8) and 3-hydroxybutyrate (n = 7). a-KG, a-

ketoglutarate.

(E) Pharmacological inhibition of MCT1 transporter decreases the passage of circulating lactate to feces. Mice were injected i.p. with saline or 100 mg/kg

AZD3965, and fresh feces lactate enrichment was measured. Mean ± SE, n = 6 for saline and n = 5 for AZD3965. *** p < 0.001 by two-sided Student’s t test.

(F) Passage of circulating 15N-labeled nutrients into the feces. As in (D), for 15N-labeling. Mean ± SE, n = 3 except for urea (n = 4) and ammonia (n = 5).

See also Figure S2.
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mice that colonized intentionally with only urease-negative bac-

teria showed no labeling from urea (Figures S2C and S2D).

Urea, which is made from ammonia in the liver, was a

quantitatively greater source of microbiome nitrogen than

ammonia. Moreover, urea, but not ammonia, was more abun-

dant in the host circulation than cecal lumen, consistent with

only urea being able to passively flow into the gut lumen

(Figures S2E and S2F). We hypothesized that circulating

host ammonia might be feeding the microbiome, mainly indi-

rectly, after being converted by the host liver into circulating

urea (Figure S2G) (Bartman et al., 2021). This indirect contribu-

tion was calculated by multiplying circulating urea’s contribu-

tion to fecal amino acids (LAAs)urea) by the circulating urea

fraction that comes from circulating ammonia (Lurea)NH3
=

33%). It fully explained the observed microbiome labeling

from circulating ammonia (Figure S2H). Further supporting

the indirect pathway, antibiotics treatment blocked both circu-

lating urea and ammonia from becoming cecal ammonia

(Figures S2I and S2J), which makes sense if flux of ammonia

into the cecal contents goes through host urea and microbial

urease (Figure S2K).

Microbiota synthesize amino acids from fiber and urea
To determine quantitatively the sources of microbiome metab-

olites, we measured their labeling after ad libitum feeding of

isotopically enriched food. To this end, we fed mice standard

chow with a portion of the fiber, fat, or protein 13C-labeled,

with cecal labeling reaching steady state within 12 h (Fig-

ure S3A). To account for circulating nutrient inputs, we also

infused 13C-lactate or 3-hydroxybutyrate (Figure 2A). These

studies identified a majority of the carbon feeding into most mi-

crobiome central metabolites, with glycolytic and pentose

phosphate metabolites labeling almost exclusively coming

from dietary fiber (inulin), whereas pyruvate and TCA metabo-

lites are also labeled from dietary protein and circulating lactate

(Figures 2B and S4A).

We next examined inputs to microbiome free amino acids,

tracing also with 15N-labeled dietary protein and infused urea.

Unlike mammals, most gut bacteria have the biosynthetic ca-

pacity to make all 20 proteogenic amino acids. Nevertheless,

we observed that ‘‘essential amino acids’’, which cannot be

made by mammals and require the expression of extensive

biosynthetic pathways in bacteria, are derived mainly from die-

tary proteins (Figure 2C). In contrast, ‘‘non-essential amino

acids’’ are primarily synthesized within the gut microbiome,

using dietary inulin and circulating lactate as carbon sources.

Microbiota depletion with antibiotics or in germ-free mice

favored cecal accumulation of those amino acids coming (based

on our isotope-tracing studies) largely from dietary protein

and depletion of those being synthesized by the microbes

(Figures S3B–S3G).

Dietary protein was themain nitrogen source for both essential

and non-essential amino acids, with host urea also contributing

substantially to the non-essential amino acids (Figure 2D). Die-

tary protein provides nitrogen to cecal amino acids mainly

directly, not through circulating urea (Figures S3H and S3I).

Consistent with the gut microbiome synthesizing amino acids

from fiber carbon and urea nitrogen, across amino acids, urea’s
nitrogen contribution correlated with inulin’s carbon contribution

(Figure 2E).

Amino acid labeling from inulin was typically partial (i.e., one

or a few of the amino acid’s carbons atoms were labeled), re-

flecting inulin’s carbons being scrambled with other inputs

into central metabolism (Figure S3J). In contrast, labeling from
13C, 15N-proteins was typically complete (or complete except

for the nitrogen label; Figure S3K), indicating direct usage of

intact amino acids after proteolysis (sometimes after a cycle

of deamination and re-amination). Consistent with such re-ami-

nation, the combination of 15N-urea infusion and 13C-protein

feeding produced some double-labeled (13C, 15N-labeled)

amino acids (Figure S3L).

Lastly, the amino acids synthesized by the microbiome stay in

the microbiome: we do not observe discernible labeling of these

amino acids in the host (Figure S3M). Taken together, we found

the following: (1) essential amino acids, although capable of be-

ing synthesized by the microbiome, come mainly from the diet

and do not go through any carbon rearrangements; (2) the

most closely TCA-linked non-essential amino acids are substan-

tially synthesized by the microbiome, using carbon from fiber

scrambled with other carbon via central metabolic reactions;

and (3) transamination reactions partially mix nitrogen from

diet-derived amino acids with nitrogen from host urea.

Diversemicrobiome products come fromdietary protein
We next examined the carbon inputs to the other major micro-

biome products, especially the ones excreted into the portal

circulation (Table 1). As expected, SCFAs, the most abundant

microbial metabolites, come mainly from dietary fiber. Many

less abundant ones, however, are mainly derived from dietary

protein.

In addition to classical microbiome products, we also

observed metabolites that are made in a collaborative manner,

with the host carrying out the final synthesis using micro-

biome-derived inputs. For example, a wide range of micro-

biome-derived carboxylic acids are conjugated to glycine in

the liver and kidneys to make different acyl-glycines

(Figures S4B–S4E) (Wikoff et al., 2009).

We also examined the host clearance mechanisms of micro-

biome metabolites, based on arterial-venous gradients across

the liver and kidney and levels in the urine. SCFAs and

branched-chain fatty acids were avidly consumed by the liver.

Most microbiome-derived metabolites were excreted by the kid-

ney into the urine, with the notable exception of SCFAs, which

are actively reabsorbed (Table S1A) (Jang et al., 2019; Ullrich

et al., 1982). Thus, we establish dietary protein as amajor precur-

sor to many microbiome metabolites and identify host-micro-

biome interplay in the metabolism of SCFAs, including their renal

reabsorption and use by the liver and kidney for the synthesis of

acyl-glycines.

Circulating levels of microbiota metabolites are
controlled by protein digestibility
We found that many microbiome-derived metabolites are

derived from unabsorbed dietary protein that reaches the colon.

We hypothesized that the circulating levels of such metabolites

would depend on the extent of dietary protein reaching the
Cell 185, 3441–3456, September 1, 2022 3445
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Figure 2. Quantitative analysis of dietary and circulating nutrient contributions to gut microbiome

(A) Experimental design. Mice were fed chow containing 13C-protein, 13C-inulin, 13C-fatty acids, or 15N-protein for 24 h. Alternatively, mice were intravenously

infused with 13C-lactate, 13C-3-hydroxybutyrate, or 15N-urea for 24 h. The labeling of cecal-content metabolites was analyzed by LC-MS.

(B) Contribution of dietary and circulating nutrients to carbohydrate fermentation pathways in gut microbiome. Mean ± SE, n = 4. G6P, glucose-6-phosphate;

PEP, phosphoenolpyruvate.

(C) Contribution of dietary and circulating nutrients to cecal amino acid carbon. The names of essential amino acids (EAA) are written in blue and non-essential

amino acids (NEAA) in black. Mean ± SE, n = 4.

(D) Contribution of dietary and circulating nutrients to cecal amino acid nitrogen. As in (C), for nitrogen.

(E) Positive correlation, across amino acids in the cecal contents, of carbon contribution from dietary inulin and nitrogen contribution from circulating urea. Mean

± SE, n = 4.

See also Figures S3 and S4.
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colonic microbiome. To manipulate this, we fed mice diets in

which a portion of the protein (casein, which in part reaches

the colonic microbiome) was replaced with free amino acids

(which are essentially fully absorbed in the small intestine) (Fig-

ure 3A). After 2 weeks, we performed metabolomics on the sys-

temic blood. As expected, diets with less intact protein andmore

free amino acids tended to increase circulating amino acid levels

(Figure 3B). Importantly, protein-derived circulating microbial
3446 Cell 185, 3441–3456, September 1, 2022
metabolites (phenols, indoles, and acyl-glycines) fell in tandem

(Figures 3C–3I). Thus, knowledge of the nutrient sources of

microbiome metabolites can be applied to manipulate their sys-

temic levels.

Gut bacterial growth is synchronized with host feeding
Thus far, we have reported inputs and outputs of the gut micro-

biome as a whole. We now shift to examining the growth and
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Figure 3. Circulating levels of microbiota metabolites depend on protein reaching the microbiome

(A) Compositions of diets used in the figure. ‘‘Protein’’ is casein. ‘‘Amino acids’’ are composition-matched free amino acids.

(B) Concentration of circulating amino acids in systemic circulation after 2 weeks test diet relative to free amino acids diet. Serum was taken at ad lib fed state.

Each metabolite is a line. Mean, n = 4 mice.

(C) As in (B), for phenols. Mean, n = 4 mice.

(D) As in (B), for indoles. Mean, n = 4 mice.

(E) As in (B), for acyl-glycines. Mean, n = 4 mice.

(F) As in (B) for benzoic acid. Mean ± SE, n = 4 mice.

(G) As in (F), for serotonin. Mean ± SE, n = 4 mice.

(H) As in (F), for valerylglycine. Mean ± SE, n = 4 mice.

(I) Correlation between dietary protein (as opposed to free amino acid) fraction in diet and metabolite abundances (relative to amino acid diet). The volcano plot

shows Pearson coefficient and p value of correlation between metabolite levels to casein abundance in diet.
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metabolism of specific bacterial genera. To this end, we de-

ployed proteomics to measure gut microbial peptides and their

labeling, focusing on peptide sequences specific to a single bac-

terial genus (Figure 4A).

To quantify protein synthesis in different gut microbial genera,

we used deuterated water (D2O) tracing (Holmes et al., 2015;

O’Brien et al., 2020). To achieve steady-state labeling of body

water, we gave mice D2O by bolus injection followed by mixing

it into drinking water. Peptide labeling in the cecal contents

was then measured by proteomics (Figure 4B).
A key technical challenge in using proteomics to read out

metabolic activity is the complexity, arising from natural isotope

abundances, of peptide mass spectra. We used liquid chroma-

tography-high-resolution mass spectrometry to obtain the full

scan (MS1) mass isotope distribution for each peptide of inter-

est, with MS/MS analysis of the unlabeled form used to deter-

mine the peptide’s identity. We then calculated, based on the

mass isotope distribution, the fraction of peptide that was newly

synthesized (q). To this end, first, we calculated themass isotope

distribution of unlabeled peptides based on natural isotope
Cell 185, 3441–3456, September 1, 2022 3447
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Figure 4. Growth rate of different gut bacterial genera quantified by isotope tracing

(A) Experimental approach for isotope tracing into specific gut bacteria. Only peptides that are specific to a particular bacterial genus were examined.

(B) Growth rate quantification using D2O. Mice received D2O by i.p. injection followed by D2O drinking water, and cecal-content labeling was measured over time

by proteomics and metabolomics. Mice were fed ad lib; tissues were harvested at 9 a.m.

(C) Calculation of newly synthesized peptide fraction (q). The experimentally observed peptide mass isotope distribution was fit to a linear combination of un-

labeled peptide (‘‘old,’’ heavy forms from natural isotope abundance) and newly synthesized peptide (‘‘new,’’ heavy forms from isotope labeling pattern of free

cecal amino acids and from natural isotope abundance).

(D) Different cellular compartments from the same bacterial genus show similar labeling rate. Mean, n = 5 mice for each time point.

(E) Genus-specific growth rates were determined by a single exponential fitting, as a function of time, of q (mean across both different peptides measured from

that genus and replicate mice). Mean ± SE, n = 5 mice for each time point.

(F) Bacterial replication half-time of different gut bacteria. Data are exponential fits ± SE

(G) The gut bacteria synthesize protein in sync with the physiological feeding patterns of the host. The figure shows the average newly synthesized peptide

fraction (q) for different gut bacterial genera after D2O labeling during daytime versus nighttime. Each line connects the daytime and nighttime measurements for

one genus. Mean, n = 10 mice for daytime and for nighttime.

See also Figure S5.
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abundances (‘‘old’’). Second, we calculated the expected mass

isotope distribution of a newly synthesized peptide generated

from cecal free amino acids, whose labeling we experimentally

measured by metabolomics. Then, we determined the fraction

of newly synthesized (q) by linear interpolation between the

‘‘old’’ and ‘‘newly synthesized’’ spectra (Figure 4C). To verify

this approach in vitro, we cultured Clostridium sporogenes and

Bacteroides dorei in media enriched with D2O and measured

growth rate as is typically done (based on OD600) and as above

(using media in place of cecal amino acid labeling), finding

good agreement (Figures S5A–S5C).
3448 Cell 185, 3441–3456, September 1, 2022
We then measured the newly synthesized fraction (q) for

a minimum of 5 peptides for each bacterial genus in vivo,

with abundant gut bacteria yielding q for over 100 charac-

teristic peptides. Irrespective of their intracellular location,

different peptides from the same bacterial genus tended to la-

bel at a similar rate (Figures 4D, S5D, and S5E). Labeling rate

varied across bacterial genera, with a half doubling time

ranging from 2.5 h for Akkermansia to 8 h for Lactobacillus,

which still markedly exceeded the labeling rate of host

intestinal proteins (>24-h half doubling time) (Figures 4E, 4F,

and S5F).
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Figure 5. Preferred carbon sources differ across gut bacteria

(A) Calculation of peptide’s relative 13C-enrichment (g) and carbon contribution from the tracer to a bacterial genus (fgenus)nutrient). First, the experimentally

observed peptide mass isotope distribution was fit to a linear combination of an unlabeled peptide (heavy forms from natural isotope abundance) and a peptide

made from free cecal amino acids (heavy forms from isotope labeling pattern of free cecal amino acids and from natural isotope abundance), yielding g. Then,

fgenus)nutrient was determined by correcting for the fractional contribution of that tracer to the cecal free amino acid pools.

(legend continued on next page)
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Our prior analyses revealed that the microbiome is fed sub-

stantially by dietary components. Accordingly, we hypothesized

that microbial growth synchronizes with physiological feeding,

which in mice occurs mainly during the nighttime. To assess

the diurnal rhythm of gut bacterial protein synthesis, mice were

given D2O for 6-h intervals throughout the diurnal cycle, followed

by proteomic analysis of their cecal contents. Every measured

bacterial genus showed greater protein synthesis during night-

time than daytime (Figure 4G). Thus, gut bacteria grow in sync

with the physiological feeding patterns of the host.

Preferred carbon sources differ across gut bacteria
Next, we quantitated the carbon feedstocks of different mi-

crobes by combining 13C-nutrient labeling and proteomics.

Each 13C-labeled nutrient (dietary inulin, dietary algal protein,

or circulating lactate) was provided for 24 h, which is sufficient

to achieve steady-state labeling in the gut bacteria. Our analysis

strategy involved two steps: first, we calculated, based on each

genus-specific peptide’s observed mass isotope distribution, its

relative 13C-enrichment (g) compared with that of cecal free

amino acids (Figure 5A). Mathematically, this calculation is iden-

tical to the calculation of q in the D2O case, except here, the

tracer is a particular 13C-labeled nutrient, which unlike D2O is

used preferentially by certain bacterial genera. The observed

peptide’s relative 13C-enrichment multiplied by the average

contribution of that 13C-tracer to the gut microbial amino acid

pool (LAA avg)nutrient) gives a quantitative measure of the tracer’s

contribution to the observed genus-specific peptide. Averaging

across such peptides gives a fractional contribution of the 13C-

labeled nutrient to protein synthesis in a bacterial genus.

Using this method, we measured feedstocks of the bacterial

genera that were detected in every proteomics experiment. We

were also able to make species-specific measurements in

some cases (Figures S6A–S6F). We observed marked differ-

ences in nutrient preferences across microbiota. For example,

Bacteroides and Clostridium use over 4-fold more inulin than

Akkermansia, Muribaculum, or Alistipes (Figures 5B and S6A).

Overall, bacteria from the phylum Firmicutes used more dietary

protein than Bacteroidetes (Firmicutes 0.237 ± 0.052; Bacteroi-

detes 0.175 ± 0.031, p = 0.02). Akkermansia, which is generally

considered a health-promoting gut microbe, used among the

least dietary inulin and protein (Figures 5B, 5C, S6A, and S6B).

In contrast, it used by far the most circulating lactate from the

host (Figures 5D and S6C).

We were curious whether these bacterial nutrient preferences

predict microbiome composition changes upon dietary changes.

To explore this possibility, we fedmice an inulin-enriched or algal

protein-enriched diet for 2 days and measured microbiome
(B) Carbon contribution of dietary inulin across bacterial genera. Mean ± SE, n =

(C) Carbon contribution of dietary algal protein across bacterial genera. Mean ±

(D) Carbon contribution of circulating lactate across bacterial genera. Mean ± SE

(E) Experimental scheme of high-inulin diet feeding followed by 16S rRNA gene a

(F) Genus-level microbiota composition changes after high-inulin diet. The gene

p < 0.05 and ** p < 0.01 by two-sided Student’s t test.

(G) Correlation between genera abundance changes and carbon-source prefere

(H–J) As in (E)–(G), for algal protein-supplemented diet.

See also Figure S6.
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composition by 16S rRNA gene amplicon sequencing. Bacter-

oides, the top consumer of 13C-inulin, increased by 4-fold after

a high-inulin diet (Figures 5E–5G). Clostridium, another high-

inulin consumer, also increased by 2-fold. Other genera that

use less inulin carbon were either unchanged or slightly

decreased. A similar consistency between microbes’ nutrient

preference and abundance changes was observed in mice fed

the algal protein-enriched diet (Figures 5H–5J). Carbon-source

preference measured by proteomics (fgenus)nutrient) correlates

with abundance change, following a diet shift measured by

16S rRNA gene amplicon sequencing, for both the inulin and

algal protein conditions (Figures 5G and 5J). Thus, the nutrient

preferences of different gut bacteria help explain microbiome

compositional changes following dietary manipulations (David

et al., 2014).

Firmicutes consume dietary protein, while
Bacteroidetes consume secreted host protein
Lastly, we turned to the nitrogen-source preferences of different

gut bacteria, comparing 15N-labeled dietary protein feeding with
15N-urea infusion. The analytical approach was identical to that

employed above for carbon-source preferences. Bacterial

genera that highly use carbon from dietary protein also highly

use nitrogen from dietary protein, consistent with amino acids

from dietary protein being assimilated intact in bacterial pro-

teomes (Figures 6A, S6D, and S6G).

Conversely, among members of the phylum Firmicutes,

genera preferring urea nitrogen tended to be avid inulin users,

i.e., to synthesize their own amino acids using inulin and urea

(Figures 6B, S6E, and S6H). This includes some urease-negative

genera, which presumably acquire urea nitrogen via cross-

feeding. Moreover, again among Firmicutes, we also saw the ex-

pected trade-off where some genera prefer nitrogen from dietary

protein and others from circulating urea (Figure S6I). Following

intravenous urea infusions to raise circulating urea concentra-

tions, abundance of those Firmicutes preferring urea, along

with Akkermansia, increased substantially (Figures 6C–6F).

Compared with Firmicutes, the lower use of both dietary pro-

tein and circulating urea nitrogen by Bacteroidetes raised a key

question: how do Bacteroidetes get nitrogen? Some members

of gut microbiome (e.g., Bacteroides and Akkermansia) are

capable of digesting host-secreted proteins such as mucins

(Berry et al., 2013; Reese et al., 2018). We hypothesized that

host-secreted proteins are a key source of Bacteroidetes

nitrogen. To probe this possibility, we performed long-term
15N-labeled lysine and arginine infusions (12, 18, and 36 h) to la-

bel host proteins in the colon (Figures 6G and S7A–S7E). Despite

not directly feeding the microbiome (Figures 1F and S7E), lysine
4 mice.

SE, n = 6 mice.

, n = 7 mice.

mplicon sequencing.

ra increased after high-inulin diet prefer inulin in (B). Mean ± SE, n = 3 mice. *

nce.
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and arginine did contribute after 36-h infusion, consistent with

the labeling occurring via host proteins. Such labeling occurred

preferentially in Bacteroidetes and Akkermansia (Figures 6H

and S6F). The nitrogen contributions from dietary and secreted

host proteins were anti-correlated, consistent with some gut

bacteria preferentially consuming dietary protein and others

host protein (Figure 6I). Bacterial genera with a greater prefer-

ence for dietary protein, whose availability depends on host

feeding, grow more differently between daytime and nighttime

(Figures S6J and S6K). Thus, dietary proteins and circulating

urea are the major nitrogen feedstock of Firmicutes, whereas

secreted host proteins provide nitrogen to Bacteroidetes.

DISCUSSION

As for most microbial communities, the composition of the

gut microbiome is shaped by nutrient availability. Here, we

developed quantitative isotope-tracing approaches to mea-

sure the nutrient preferences of gut bacteria. In addition to

dietary fiber and secreted host proteins, we establish dietary

protein and circulating host lactate, 3-hydroxybutyrate, and

urea as important nutrients feeding gut bacteria. Importantly,

we rule out direct contributions from other circulating host

nutrients, like glucose and amino acids, to the colonic

microbiome.

A key technical achievement is enabling tracing from different

carbon and nitrogen sources into bacteria-specific peptides,

thereby revealing the nutrient preferences of different bacteria

within the complex and competitive gut lumen environment.

We find that Firmicutes and Bacteroidetes differ systematically

in their utilization of host-secreted protein versus dietary protein:

Firmicutes tend to acquire amino acids from dietary protein,

whereas Bacteroidetes rely more on secreted host protein (Fig-

ure 6J). This may relate to different localization of bacteria within

the colon, either in terms of central versus peripheral (closer to

host mucus) or distal versus proximal (closer to incoming food

remnants) (Albenberg et al., 2014; Li et al., 2015; Yasuda

et al., 2015).

Within these two major families of gut bacteria, we found

marked disparities in the use of dietary fiber as a carbon source.

The most abundant Bacteroidetes genus is Bacteroides, and it

was the most avid assimilator of fiber (inulin). In contrast, other

types of bacteria in the same phylum hardly consumed inulin.
Figure 6. Firmicutes favor dietary protein, while Bacteroidetes prefer s

(A) Nitrogen contribution of dietary algal protein across bacterial genera. Mean ±

(B) Nitrogen contribution of circulating urea across bacterial genera. Mean ± SE,

(C) Experimental scheme of 72 h urea infusion followed by 16S rRNA gene ampl

(D) Urea infusions increased urea concentration in systemic circulation. n = 5 mi

(E) Genus-level microbiota composition changes after urea infusion. The genera in

by two-sided Student’s t test.

(F) Correlation between genera abundance changes and nitrogen-source prefere

(G) Experimental schematic of long-term 15N-lysine and 15N-arginine infusion to

(H) Nitrogen contribution of secreted host proteins across bacterial genera. Mea

(I) Negative correlation between dietary protein nitrogen and secrected proteins

(J) Summary of carbon and nitrogen inputs to different gut bacteria. Firmicutes pre

urea. Bacteroidetes heavily use dietary fiber, while using host-secreted proteins

circulating small molecules (lactate and urea).

See also Figures S6 and S7.
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Likewise, some Firmicutes like Clostridium avidly used fiber,

whereas others did not. Strikingly, feeding a fiber-enriched diet

led to an increased abundance of Bacteroides and Clostridium,

the precise genera that most actively assimilate fiber based on

isotope tracing.

A similar trendwas observed in the case of dietary supplemen-

tation with algal protein: Firmicutes, which actively use such pro-

tein, tended to increase in abundance. Algal protein (the only

type commercially available in bulk in 13C-labeled form) may

be particularly hard for mammals to digest. This is reflected in

the 13C-labeled amino acids from algal protein appearing limit-

edly in the portal circulation and instead extensive passing

from the intestine into the colon. This influx of dietary protein to

the microbiome was amajor contributor to secreted microbiome

metabolites. As shown by replacing intact dietary protein with

more absorbable (and thus less microbiome-accessible) free

amino acids, the production and hence systemic concentration

of these products depend on dietary protein reaching the colonic

microbiome. An important future question is whether the nature

of dietary protein (e.g., plant- or animal-based) impacts passage

through the small intestine to the colonic microbiome and

thereby shapesmicrobiome composition ormetabolite secretion

(Madsen et al., 2017; Wali et al., 2021).

Host circulating metabolite levels may also impact microbiome

nutrient access and ultimately composition. Here, we show such

effects are likely limited to the few host metabolites that meaning-

fully penetrate the microbiome: urea, 3-hydroxybutyrate, and

lactate. Among them, lactate was recently shown to feed the

gut microbiome in human marathon runners (Scheiman et al.,

2019). Among gut bacteria, Akkermansia most avidly use circu-

lating lactate. Akkermansia are mucin degraders, and their prox-

imity to the gut epithelial wall may augment their access to lactate

from the host circulation. Akkermansia are more abundant in ath-

letes, and exercise increases their levels in mice and human (Liu

et al., 2017;Munukka et al., 2018). A possiblemechanism involves

increased circulating lactate levels following exercise directly

feeding Akkermansia. Whether lactate-induced Akkermansia

growth in part mediates beneficial effects of exercise is an impor-

tant open question. Consistent with their urea preferences

measured by isotope tracing, Akkermansia and certain genera

within Firmicutes (e.g., Roseburia, Butyricoccus, and Ruminococ-

cus) also increase in abundance upon experimental elevation of

circulating host urea.
ecreted host protein

SE, n = 6 mice.

n = 6 mice.

icon sequencing.

ce. *** p < 0.001 by two-sided Student’s t test.

creased after urea infusion prefer urea in (B). Mean ± SE, n = 5 mice. * p < 0.05

nce.

probe the contribution of secreted host proteins to different bacterial genera.

n ± SE, n = 5 mice.

nitrogen contribution.

fer dietary carbon sources (fiber and protein) and nitrogen from host circulating

for nitrogen. Verrucomicrobia prefer host-secreted nutrients, both protein and
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Ultimately, manipulating the microbiome requires under-

standing which nutrients different bacteria consume and how

such consumption impacts microbiome composition and

product secretion. Through isotope tracing, including proteo-

mic measurements that offer bacterial genus specificity, we

provide foundational knowledge about which nutrients feed

the gut microbiome and which bacteria prefer which nutrients.

The methodologies developed here are poised for broader

application, which could eventually contribute to the holistic

and quantitative understanding of the diet-microbiome-health

connection.

Limitations of the study
Our investigation focuses solely on healthy mice that are fed

standard chow (in some cases with specific fiber or protein sup-

plements). Measurements of microbiome feedstocks are limited

to isotope tracing and mass spectrometry. Feedstocks of

different bacteria are determined based on the isotopic signa-

tures of bacteria-specific peptides. Peptide identification in-

volves a 2% false discovery rate. Taxonomic assignment is

based on bacterial proteome sequences available on Uniprot

(Gurdeep Singh et al., 2019). Orthogonal approaches, which

could provide measurement validation or complementary infor-

mation, such as fluorescence-activated cell sorting of bacteria,

were not explored (Batani et al., 2019). In most cases, taxonomic

assignment was limited to the genus level due to the lack of suf-

ficient specificity of the detected peptide sequences. In the

future, improved sensitivity may enable species- or strain-spe-

cific peptide sequence measurements.
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M., Jané-Valbuena, J., Gelfand, E., Schweppe, D.K., Jedrychowski, M., et al.

(2020). Quantitative proteomics of the cancer cell line encyclopedia. Cell 180,

387–402.e16. https://doi.org/10.1016/j.cell.2019.12.023.

O’Brien, J.J., Narayan, V., Wong, Y., Seitzer, P., Sandoval, C.M., Haste, N.,

Smith, M., Rad, R., Gaun, A., Baker, A., et al. (2020). Precise estimation of

in vivo protein turnover rates. bioRxiv. 2020.11.10.377440. https://doi.org/

10.1101/2020.11.10.377440.

Oberbach, A., Haange, S.-B., Schlichting, N., Heinrich, M., Lehmann, S., Till,

H., Hugenholtz, F., Kullnick, Y., Smidt, H., Frank, K., et al. (2017). Metabolic

in vivo labeling highlights differences of metabolically active microbes from

the mucosal gastrointestinal microbiome between high-fat and normal chow

diet. J. Proteome Res. 16, 1593–1604. https://doi.org/10.1021/acs.jpro-

teome.6b00973.
Purser, D.B., and Buechler, S.M. (1966). Amino acid composition of rumen or-

ganisms. J. Dairy Sci. 49, 81–84. https://doi.org/10.3168/jds.S0022-0302(66)

87791-3.

Qin, J., Li, R., Raes, J., Arumugam,M., Burgdorf, K.S., Manichanh, C., Nielsen,

T., Pons, N., Levenez, F., Yamada, T., et al. (2010). A human gut microbial gene

catalogue established by metagenomic sequencing. Nature 464, 59–65.

https://doi.org/10.1038/nature08821.

Quinn, R.A., Melnik, A.V., Vrbanac, A., Fu, T., Patras, K.A., Christy, M.P.,

Bodai, Z., Belda-Ferre, P., Tripathi, A., Chung, L.K., et al. (2020). Global chem-

ical effects of the microbiome include new bile-acid conjugations. Nature 579,

123–129. https://doi.org/10.1038/s41586-020-2047-9.

Reese, A.T., Pereira, F.C., Schintlmeister, A., Berry, D., Wagner, M., Hale, L.P.,

Wu, A., Jiang, S., Durand, H.K., Zhou, X., et al. (2018). Microbial nitrogen lim-

itation in the mammalian large intestine. Nat. Microbiol. 3, 1441–1450. https://

doi.org/10.1038/s41564-018-0267-7.

Ridlon, J.M., Kang, D.J., Hylemon, P.B., and Bajaj, J.S. (2014). Bile acids and

the gut microbiome. Curr. Opin. Gastroenterol. 30, 332–338. https://doi.org/

10.1097/MOG.0000000000000057.

Savitski, M.M., Wilhelm, M., Hahne, H., Kuster, B., and Bantscheff, M. (2015).

A scalable approach for protein false discovery rate estimation in large prote-

omic data sets. Mol. Cell. Proteomics 14, 2394–2404. https://doi.org/10.1074/

mcp.M114.046995.

Scheiman, J., Luber, J.M., Chavkin, T.A., MacDonald, T., Tung, A., Pham, L.-

D., Wibowo, M.C., Wurth, R.C., Punthambaker, S., Tierney, B.T., et al. (2019).

Meta-omics analysis of elite athletes identifies a performance-enhancing

microbe that functions via lactate metabolism. Nat. Med. 25, 1104–1109.

https://doi.org/10.1038/s41591-019-0485-4.

Sicard, J.-F., Le Bihan, G., Vogeleer, P., Jacques, M., and Harel, J. (2017). In-

teractions of intestinal bacteria with components of the intestinal mucus.

Front. Cell. Infect. Microbiol. 7, 387. https://doi.org/10.3389/fcimb.

2017.00387.

Spinelli, J.B., Kelley, L.P., and Haigis, M.C. (2017a). An LC-MS approach to

quantitative measurement of ammonia isotopologues. Sci. Rep. 7, 10304.

https://doi.org/10.1038/s41598-017-09993-6.

Spinelli, J.B., Yoon, H., Ringel, A.E., Jeanfavre, S., Clish, C.B., and Haigis,

M.C. (2017b). Metabolic recycling of ammonia via glutamate dehydrogenase

supports breast cancer biomass. Science 358, 941–946. https://doi.org/10.

1126/science.aam9305.

Tang, W.H.W., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., Wu, Y.,

and Hazen, S.L. (2013). Intestinal microbial metabolism of phosphatidylcholine

and cardiovascular risk [WWW Document]. N. Engl. J. Med. 368, 1575–1584.

https://doi.org/10.1056/NEJMoa1109400. 10.1056/NEJMoa1109400.
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Neomycin trisulfate salt hydrate Sigma-Aldrich Cat# N6386

Metronidazole Sigma-Aldrich Cat# M1547

Vancomycin hydrochloride from Streptomyces

orientalis

Sigma-Aldrich Cat# V1130

Trypsin Promega Cat# V5113

Lysyl endopeptidase R Wako Chemicals USA Cat# 12902541

Aspartame Sigma-Aldrich Cat# 47135

GAM Broth Modified HyServe Cat# 5433

LB Broth (Miller, Luria Broth) Sigma Cat# L3522

MRS Broth Sigma Cat# 69966

TSB (Tryptic Soy Broth) Bacto Cat# 211825

Experimental models: Organisms/strains

Mouse: C57BL/6 Charles River Laboratories Cat #027

Strain: Bacteroides dorei (CL02T00C15) BEI #HM-717

Strain: Clostridium sporogenes (ATCC 15579) ATCC 15579

Strain: Escherichia coli (ATCC 25922) ATCC 25922

Strain: Lactobacillus reuteri (CF-48-34A) BEI #HM-102

Strain: Staphylococcus aureus subsp.

Aureus Rosenbach

ATCC 29213

Software and algorithms

El-MAVEN software Elucidata https://www.elucidata.io/el-maven

AccuCor GitHub https://github.com/XiaoyangSu/AccuCor

PepMID GitHub https://github.com/xxing9703/pepMID_simul

MATLAB R2021b MathWorks N/A

Deposited data

Proteomics Data N/A PXD031015

Others

PicoLab Rodent Diet 20 LabDiet Cat# 5053

20% Diet premix Research Diets Cat# D11112201Npx2i

20% Amino acids diet Research Diets Cat# A11112201Bi
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Professor

Joshua D. Rabinowitz (joshr@princeton.edu).

Materials availability
This study did not generate new unique regents or new mouse lines.

Data and code availability
The proteomics datasets generated during this study are deposited in ProteomeXchange: PXD031015. The isotope tracing data are

included in Table S2. The taxonomic assignment of the detected tryptic peptides in the study are included in Table S3. Composition

of the diet used in the study are included in Table S4. The 16S rRNA gene amplicon sequencing datasets generated during this study

are available in Table S5. The code for peptide enrichment calculations generated during this study is available at GitHub: (https://

github.com/xxing9703/pepMID_simul). Any additional information required to re-analyze the data reported in this work is available

from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse studies
Mouse studies followed protocols approved by the Princeton University Animal Care and Use Committee. Unless otherwise

indicated, 7-9-week-old male C57BL/6NCrl mice (strain 027; Charles River Laboratories) fed PicoLab Rodent Diet 20 were group-

housed on a normal light-dark cycle (8:00-20:00) with free access to water and chow.

Bacterial culture studies
B. dorei, C. sporogenes, E. coli, S. aureus and L. reuteri glycerol stocks were brought into an anerobic chamber (70% N2, 25% CO2,

5% H2) and grown in liquid media: L. reuteri was grown on MRS (MRS Broth, Sigma); E. coli was grown on LB (Luria Broth, Sigma);

S.aureus was grown in TSB (Tryptic Soy Broth, Bacto) and C. sporogenes and B. dorei were grown in GAM (GAM Broth Modified,

HyServe).

METHOD DETAILS

Mouse gavage and nutrient feeding
For the 13C-nutrient gavage experiments, mice were fasted at 9 am and received a 1:2:4 mixture of inulin, protein/amino acids, and

starch (0.5 g kg-1 inulin, 1 g kg-1 protein/amino acids 2g kg-1 starch dissolved in water) at 3 pm via oral gavage with a plastic feeding

tube (Instech Laboratories). Food was given back at 8 pm.

For the mouse experiments involving labeled nutrient feeding, the labeled diet was prepared by adding 13C/15N-nutrients to a diet

mixture premix (modified from normal diet with reduced protein, inulin, and starch content, Research diets Inc, D20030303). The final

enrichment for each labeled dietary nutrient was 10% - 25% (with observed labeling corrected by dividing by the fraction dietary

nutrient labeled). The contribution of each dietary nutrient to metabolites is calculated by the metabolite labeling enrichment normal-

ized to the final enrichment of each labeled dietary nutrient. All diets shared the same final macronutrient composition (40% starch,

20% protein or amino acids, 7.5% inulin and 2.5% cellulose). Mice were first adapted to a non-labeled diet (of identical composition

to the subsequent labeled diet) for 10 days, and then fed labeled diet for 24 h prior to sacrifice.

For the deuterium water drinking experiment, mice were administered a bolus intraperitoneal injected of D2O (1.26 %w/w relative

to body weight), followed by having ad lib access to 3% D2O drinking water.

For the protein and amino acids diet feeding experiment, micewere fed on casein or compositional matched amino acids diet (20%

casein, 13% casein + 7% amino acids, 7% casein +13% amino acids, and 20% amino acids as protein/amino acids sources;

Table S4) for 2 weeks. Serum was sampled by tail-bleed at 9 am ad lib.

Intravenous infusions
To quantify contribution of circulating nutrients to microbiota metabolism, 9-11-week-old C57BL/6 mice were catheterized in house

in the right jugular vein. The mice were infused with carbon or nitrogen-labeled tracer starting at 3:30 pmwithout any fasting. Infusion

rate was 0.1 ul/min/g. Infusion solutions are described in Table S2A. Overnight (24 h) infusions both started and finished around 9 am.

The contribution of circulating nutrient to each metabolite is calculated by the metabolite labeling enrichment normalized to the

average tracer serum enrichment throughout 24 hr.

Antibiotics treatment
To deplete the mouse resident microbiome, an antibiotic drinking water protocol was used. In brief, mice were treated with a cocktail

of antibiotics (1 g/L ampicillin, 1 g/L neomycin, 1 g/L metronidazole, and 1 g/L vancomycin) in both their drinking water 14 days. To

make the drinking water more palatable, 5% aspartame was added. The effectiveness of antibiotics treatments was verified by

observing much lower SCFAs in the feces by LC-MS.

Sample collection
Systemic blood samples were collected by tail bleeding. For sampling from tissue-specific draining veins, a mouse was put under

anesthesia and different tissue veins were exposed, and blood samples were pulled with an insulin syringe (BD insulin syringes, #

SY8290328291) insertion into the vein. Successful isolation of portal vein was confirmed by much higher (> 10x) concentrations of

SCFAs and secondary bile acids (deoxycholic acid and lithocholic acid) than systemic vein; hepatic vein was confirmed by much

lower secondary bile acids, SCFAs and higher glucose, 3-hydroxybutyrate levels compared to portal vein. Mouse urine was collected

from the urinary bladder using a syringe. All serum samples were placed on ice without anticoagulant for 15 min, and centrifuged at

16,000 x g for 15 min at 4 C.

Tissues were harvested by quick dissection and snap freezing (< 5 sec) in liquid nitrogen with a pre-cooled Wollenberger clamp;

intestinal contents were removed before clamping. For cecal content sampling, the mouse cecum was first removed and cut on the

surface, then the cecal content was squeezed out using a tweezer followed by freeze clamping. Whole liver, intestine, and intestinal

contents were collected and ground to homogenous powder. To sample fresh feces, themouse belly was gently massaged to induce

defecation and fresh feces were freeze clamped. For long-term feces collection, a mouse was transferred to a new cage and mouse
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fecal pellets on the bedding were collected every 1�2 h and freeze clamped. Serum, tissue, and feces samples were kept at -80 �C
until further analysis.

16S rRNA gene amplicon sequencing and analysis
Extraction of Bacterial DNA from cecal or fecal samples was performed using the Power Soil DNA Isolation kit (QIAGEN). A section of

the 16S rRNA gene (�250 bp, V4 region) was amplified, and Illumina sequencing libraries were prepared from these amplicons ac-

cording to a previously published protocol and primers (Caporaso et al., 2012). Libraries were further pooled together at equal molar

ratios and sequenced on an Illumina HiSeq 2500 Rapid Flowcell or MiSeq as paired-end reads. These reads were 2x150 bp with an

average depth of �20,000 reads. Also included were 8 bp index reads, following the manufacturer’s protocol (Illumina, USA). Pass-

Filter reads were generated from raw sequencing reads using Illumina HiSeq Control Software. Samples were de-multiplexed using

the index reads. The DADA2 plugin within QIIME2 version 2018.6 was used to inferred Amplicon sequencing variants (ASVs) from the

unmerged paired-end sequences (Bolyen et al., 2019; Callahan et al., 2016). The forward reads were trimmed at 150 bp and the

reverse reads trimmed at 140 bp, with all other DADA2 as default. Taxonomy was assigned to the resulting ASVs with a naı̈ve Bayes

classifier trained on the Greengenes database version 13.8, with only the target region of the 16S rRNA gene used to train the clas-

sifier (Bokulich et al., 2018; McDonald et al., 2012). Downstream analyses were performedMATLAB (Hunter, 2007; McKinney, 2010).

Bacterial culture studies
For the D2O experiment, 250 - 1000 ml D2O was added into the media (5-10 mL, to reach a final enrichment of 5-10%) with either

B. dorei or C. sporogenes, and OD600 was recorded at the addition. After every 25-30 min, OD600 was recorded and 100-200 ml bac-

terial solution was taken for metabolomics and proteomics analysis. The newly synthesized fraction of bacteria was calculated by

(OD600 – OD600, 0min)/OD600.

Bacterial colonization in mice
Mice were treated with antibiotics in drinking water for 10 days. On day 11, no antibiotics were administered, andmice were gavaged

with 250 ml of bacterial consortia consisting of urease-negative bacteria (B. dorei,C. sporogenes and E. coli) or a combination of ure-

ase-negative and urease-positive bacteria (B. dorei, C. sporogenes, E. coli, S. aureus and L. reuteri).

Metabolite extraction
For serum samples, 3 ul serumwas added to 90 ul methanol and incubated on ice for 10min, followed by centrifugation at 17,0003 g

for 10 min at 4�C. The supernatant was transferred to anMS vial until further analysis. For tissues and feces samples, frozen samples

were first ground at liquid nitrogen temperature with a cryomill (Restch, Newtown, PA). The resulting tissue powder was extracted

with 40:40:20 methanol: acetonitrile: water (40 ul extraction solvent per 1 mg tissue) for 10 min on ice, followed by centrifugation

at 17,000 x g for 10 min, and the supernatant was transferred to a MS vial until further analysis.

Measurements of metabolites, protein, and polysaccharides
To measure metabolites in serum, tissue and feces samples, a quadrupole orbitrap mass spectrometer (Q Exactive; Thermo Fisher

Scientific) was coupled to a Vanquish UHPLC system (Thermo Fisher Scientific) with electrospray ionization and scan rangem/z from

60 to 1000 at 1 Hz, with a 140,000 resolution. LC separation was performed on an XBridge BEH Amide column (2.13150 mm, 2.5 mm

particle size, 130 Å pore size; Waters Corporation) using a gradient of solvent A (95:5 water: acetonitrile with 20 mM of ammonium

acetate and 20 mM of ammonium hydroxide, pH 9.45) and solvent B (acetonitrile). Flow rate was 150 ml/min. The LC gradient was:

0 min, 85% B; 2 min, 85% B; 3 min, 80% B; 5 min, 80% B; 6 min, 75% B; 7 min, 75% B; 8 min, 70%B; 9 min, 70%B; 10 min, 50% B;

12min, 50%B; 13min, 25%B; 16min, 25%B; 18min, 0%B; 23min, 0%B; 24min, 85%B; and 30min, 85%B. Injection volumewas

5-10 ml and autosampler temperature was set at 4�C. For cysteine measurement, samples were derivatized before measurement as

follows: Serum, cecal content or feces samples were extracted and centrifuged. To the supernatant, 2 mM N-ethylmaleimide was

added and incubated at room temperature for 20 min. The resulting mixture was transferred to a MS vial. Derivatized cysteine

has a m/z at 245.06015 in negative mode.

To quantify the metabolite concentration in serum and tissue samples, either isotope spike-in or standard spike-in was performed.

For isotope spike-in, known concentrations of isotope-labeled standard were added to the serum or tissues extraction solution, then

the concentration was calculated by the ratio of labeled and unlabeled metabolites. When isotope standard is not available, a serially

diluted non-labeled standard was added, and a linear fitting between measured total ion count and added concentration of standard

was generated. Then, the concentration of endogenous metabolite was determined by the x intercept of the fitting line.

Starch and inulin were measured by acid hydrolysis and LC-MS. In brief, 5-10 mg sample was mixed with 10 ml 2 M hydrochloric

acid, and samples were incubated at 80�C for 2 h. After cooling down, the resulting mixture was neutralized with 12 ml saturated so-

dium bicarbonate, followed with 88 ml 1:1 acetonitrile: methanol solution. After centrifugation at 17,000 3 g for 10 min at 4�C, the
supernatant was transferred to a MS vial. Inulin and starch concentration in samples was inferred from total ion count of fructose

and glucose, respectively.

SCFAs and BCFAs were derivatized and measured by LC-MS. Serum (5 ml) or tissue samples (�10 mg) were added to 100 ml de-

rivatizing reagents containing 12mM1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide, 21mM3-Nitrophenylhydrazine hydrochloride
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acid and pyridine (2.4% v/v) in methanol. The reaction was incubated at 4�C for 1 h. Then, the reaction mixture was centrifuged at

17,000 g for 10 min. 20 ml supernatant was quenched with 200 ml 0.5 mM beta-mercaptoethanol in 0.1% formic acid water. After

centrifugation at 17,000 g for 10 min, the supernatant was transferred to MS vials until further analysis. The measurement of

SCFAs and BCFAs are performed using the same Q Exactive PLUS hybrid quadrupole-orbitrap mass spectrometer with different

column and LC setup. LC separation was on Acquity UPLC BEH C18 column (2.1 mm x 100 mm, 1.7 5 mm particle size, 130 A�

pore size, Waters, Milford, MA) using a gradient of solvent A (water) and solvent B (methanol). Flow rate was 200 mL/min. The LC

gradient was : 0 min, 10% B; 1 min, 10% B; 5 min, 30% B; 11 min 100% B; 14 min, 100% B; 14.5 min 10% B; 22 min 10 % B. Au-

tosampler temperature was 5 �C, column temperature was 60 �C and injection volume was 10 ml. Ion masses for derivatized acetate,

propionate, butyrate, iso-butyrate, valeric acid, isovaleric acid, 2-methylbutyrate, 4-methylvaleric acid were 194.0571, 208.0728,

222.0884, 222.0884, 236.1041, 236.1041, 236.1041, 250.1197 in negative mode, respectively.

The ammonia derivatization method was modified from the previous reported Berthelot reaction assay (Spinelli et al., 2017b,

2017a). In brief, 20 mg tissue or 10 ml serumwas extracted by using 200 ml 80%methanol. 100 ml of the metabolite extract was mixed

with 100 ml Solution #1 (100 mM Phenol, 50 mg/L sodium nitroprusside) and 100 ml Solution #2 (0.38 M dibasic sodium phosphate,

125 mM NaOH, 1% sodium hypochlorite, available chlorine 10-15%). The mixture was incubated at 40�C for 30 min. Then, 100 ml

reaction solution was mixed with 200 ml methanol to oversaturate the inorganic salt to quench the reaction. The final solution was

centrifuged for 30 min. Then the supernatant was loaded to LC-MS for analysis. Ion mass for derivatized ammonia is 198.05605

in negative ion mode.

Protein amino acid composition wasmeasured by acid hydrolysis. Approximately 10mg of protein was extracted with 400 ml meth-

anol, 200 ml chloroform and 300 ml water, followed by centrifugation at 20,000 3 g for 10 min at 4 �C. The upper layer was removed.

The resulting mixture was further extracted with 600 ml methanol twice and supernatant was discarded. The resulting precipitate was

dried under nitrogen gas and then hydrolyzed with 250 ml 6 M hydrochloric acid incubated overnight at 115�C. After incubation, the
samples were dried under nitrogen gas and reconstituted in 1 mL methanol, and the supernatant was transferred to a MS vial for

analysis. Amino acid composition of the proteins used in the study are shown in Figure S4F, and such differences in protein amino

acid composition do not correlate with the quantified dietary protein contribution to cecal amino acids (Figure S4G).

Proteomics sample preparation
Proteomics samples were prepared mostly as previously described (Gupta et al., 2018; Wühr et al., 2014). Mouse cecal contents

samples (10 mg each) were dissolved in 400 ml lysis buffer (6M guanidium chloride, 2% cetrimonium bromide, 5 mM dithiothreitol,

50 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES), pH 7.2). Then the sample mixture was put on ice and soni-

cated for 10 cycles (30 s on and 30 s off cycle, amplitude 50%) by a sonicator (Qsonica), followed by centrifugation at 20,000 3 g

for 20 min at 4 �C. The supernatant was taken and alkylated with 20 mM N-ethylmaleimide for 20 min at room temperature, 5 mM

dithiothreitol was added to quench the excessive alkylating reagents. Proteins were purified by methanol-chloroform precipitation.

The dried protein pellet was resuspended in 10 mMEPPS (N-(2-Hydroxyethyl) piperazine-N’-(3-propanesulfonic acid)) at pH 8.5 with

6 M guanidine hydrochloride. Samples were heated at 60�C for 15 min and protein concentration was determined by BCA assay

(Pierce BCA Protein Assay Kit, Thermo Scientific). The protein mixture (30�50 mg) was diluted with 10 mM EPPS pH 8.5 to 2 M

GuaCl and digested with 10 ng/mL LysC (Wako) at room temperature overnight. Samples were further diluted to 0.5 M GuaCl with

10 M EPPS pH 8.5 and digested with an additional 10 ng/mL LysC and 20 ng/mL sequencing grade Trypsin (Promega) at 37�C for

16 h. Samples were desalted using a SepPak cartridges (Waters) and then vacuum-dried and resuspended in 1% formic acid before

mass spectrometry analysis.

Proteomics peptide measurement
Samples were analyzed on an EASY-nLC 1200 (Thermo Fisher Scientific) HPLC coupled to an Orbitrap Fusion Lumos mass spec-

trometer (Thermo Fisher Scientific) with Tune version 3.3. Peptides were separated on an Aurora Series emitter column

(25 cm 3 75 mm ID, 1.6 mm C18) (Ionopticks, Australia) and held at 60�C during separation using an in-house built column oven

over 180 min, applying nonlinear acetonitrile gradients at a constant flow rate of 350 nL/min. The Fusion Lumos was operated in

data dependent mode. The survey scan was performed at a resolution setting of 120k in orbitrap, followed by MS2 duty cycle of

1.5 s. The normalized collision energy for CID MS2 experiments was set to 30%.

Solvent A consisted of 2% DMSO (LC-MS-grade, Life Technologies), 0.125% formic acid (98%+, TCI America) in water (LC-MS-

grade, OmniSolv, VWR), solvent B of 80% acetonitrile (LC-MS-grade, OmniSolv, Millipore Sigma), 2% DMSO and 0.125% formic

acid in water. The following 120 min-gradient with percentage of solvent B was applied at a constant flow rate of 350 nL/min after

thorough equilibration of the column to 0% B: 0% – 6% in 5 min; 6 – 25% in 160 min; 25% –100% in 10 min; 100% for 5 min. For

electrospray ionization, 2.6 kVwere applied betweenminutes 1 and 113 (or minutes 1 and 83 for fractionated samples) of the gradient

through the column. To avoid carry-over of peptides, 2,2,2-trifluoroethanol (> 99% Reagent plus, Millipore Sigma) was injected in a

30 min wash between each sample.

Proteomics data analysis
The data were analyzed using GFY software licensed from Harvard (Nusinow et al., 2020). Thermo Fisher Scientific. raw files were

converted to mzXML using ReAdW.exe. MS2 spectra assignment was performed using the SEQUEST algorithm v.28 (rev. 12) by
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searching the data against the combined reference proteomes forMusMusculus, Bos Taurus, and all the abundant bacterial families

detected in 16S rRNA gene amplicon sequencing (Bacteroidaceae, Porphyromonadaceae, Prevotellaceae, Rikenellaceae, Muriba-

culaceae, Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, Oscillospiraceae, Clostridiaceae, Eubacteriaceae, Lactobacil-

laceae andVerrucomicrobiaceae) acquired fromUniprot on Jan 2021 (SwissProt + Trembl) alongwith common contaminants such as

human keratins and trypsin. The target-decoy strategy was used to construct a second database of reverse sequences that were

used to estimate the peptide false discovery rate (Elias and Gygi, 2007). A 20-ppm precursor ion tolerance with the requirement

that both N- and C- terminal peptide ends are consistent with the protease specificities of LysC and Trypsin was used for

SEQUEST searches, two missed cleavages were allowed. NEM was set as a static modification of cysteine residues

(+125.047679 Da). An MS2 spectral assignment false discovery rate of 0.5% was achieved by applying the target decoy database

search strategy. Linear Discriminant analysis was used for filtering with the following features: SEQUEST parameters XCorr and

unique DXCorr, absolute peptide ion mass accuracy, peptide length and charge state. Forward peptides within three standard de-

viations of the theoretical m/z of the precursor were used as positive training set. All reverse peptides were used as negative training

set. Linear Discriminant scores were used to sort peptides with at least seven residues and to filter with the desired cutoff. Further-

more, we performed a filtering step on the protein level by the ‘‘picked’’ protein FDR approach (Savitski et al., 2015). Protein redun-

dancy was removed by assigning peptides to the minimal number of proteins which can explain all observed peptide, with above-

described filtering criteria.

To quantify the intensities of all the isotopic peaks of the peptides, we used raw intensity. Missed cleavage peptides (more than one

K or R in the peptide) and low signal to FT-noise peptides (M0 S/N < 20) were removed. Peptide phylogenetic assignment was per-

formed using Unipept 4.0 (Gurdeep Singh et al., 2019), ‘Equate I and L’ and ‘Advancedmissed cleavage handling’ were not selected.

Only peptides that are specific at a genus level were used for further analysis.

Quantification of newly-synthesized fraction of peptide
To determine the newly synthesized fraction of a bacterial peptide in D2O drinking water experiment, we first measured the cecal

content free amino acids deuterium labeling pattern usingmetabolomics. Then, for each peptide, we simulated the expected isotope

envelope pattern if the peptide were old, i.e., unlabeled with deuterium (Iold), versus if it were newly synthesized by taking up free

amino acids from the cecal content (Inew). Iold was calculated based on the peptide’s molecular formula and 13C, 15N, 2H, 17O,
18O, 32S, 33S and 36S natural abundance. Inew was calculated based on the peptide’s sequence and experimentally observed labeling

of the corresponding cecal free amino acids (after natural isotope correction), and the natural isotope abundance of the unlabeled

atoms in the peptide’s formula. The simulation of expected peptide isotope distribution and fitting was performed using a

MATLAB code: https://github.com/xxing9703/pepMID_simul. Exact mass isotopic peaks with appreciable abundances were

bundled by nominal mass into fraction M+0, M+1,...M+n, constituting the final simulated spectrum. A least square fit was used to

find the scalar q that best fit the measured peptide isotopic distribution (Imeasured) to a linear combination of Iold and Inew:

Imeasured = Iold 3 ð1 � qÞ+ Inew 3 q

The root mean square error was determined for each peptide fitting, and any fitting with a root mean square error > 1% was

removed. For genus-level turnover quantification, only genera with more than two measurements were kept in the analysis, with

the median value across peptides reported.

Quantification of contribution of labeled nutrient to peptide
To determine the contribution of a 13C- or 15N-labeled nutrient to a bacterial peptide, similar to the above approach, we firstmeasured

the cecal content free amino acids 13C- or 15N-labeling using metabolomics. Then, for each peptide, we simulated the expected

isotope envelope pattern if the peptide were unlabeled (Iunlabeled) versus if it were synthesized from free cecal amino acids (Ifree).

A scalar g (analogous to q above) can then be determined by fitting the measured peptide isotope distribution (Imeasured) to a linear

combination of Iunlabeled and Ifree: Note that g will exceed 1 when a bacterial genus uses a particular nutrient in excess of that nutrient

contribution’s to cecal free amino acids. Because the 13C- and 15N-labeling patterns are simpler than the D2O labeling patterns, in lieu

of carrying out this fitting, we instead determined g (with the same conceptual and mathematical meaning) using simple algebraic

equations.

Specifically, we measured g for each peptide as follows:

g =
4measured � 4unlabeled

4free � 4unlabeled
where (with the exception of 13C-protein feeding data, discussed
 immediately below) 4 is the average number of extra neutrons in a

given peptide (or simulated peptide), relative to the M+0 form. This was calculated based on the experimentally observed (or simu-

lated, as above) fraction of M+0, M+1, M+2, and M+3, which account for > 90% of the isotopes for each peptide (with more heavily

labeled forms too low abundance and noisy to contribute productively to the measurements):

4 =

P3
i = 0i,MiP3
i = 0Mi
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For the 13C-protein feeding experiments, themost readily detected labeled forms involve incorporation of a single midsized U-13C-

amino acid, which manifests as M+5 or M+6 peptide labeling. Other isotopic forms were sufficiently noisier, as to render their inclu-

sion unhelpful. Accordingly, we calculated g based on 40:

40 =
M5 +M6

M0 +M5 +M6

The above equations give nearly identical values for g as fitting (as done to determine q).

For genus-level measurements of feedstock contributions, only generawithmore than 3 peptidesmeasured permousewas kept in

the analysis, with the median value across peptides reported as ggenus. Only genera that were consistently detected in proteomics,

and the family of that genera detected (> 0.5%) in 16S rRNA gene amplicon sequencing were analyzed. The product of ggenus and the

contribution of each nutrient to cecal free amino acids (LAA avg)nutrient) was used to determine the contribution of each nutrient to

bacterial genus (fgenus)nutrient):

fgenus)nutrient = ggenus 3 LAA avg)nutrient
where the contribution of each nutrient to bacterial protein pool (LA
A avg)Nutrient ) was calculated as the average labeling across amino

acids, weighted based on their abundance in that genus’ protein and corrected for fraction of the nutrient interest labeled (T ):

LAA avg)nutrient =
X

fCecal AA)nutrient 3w%AA; bacteria

.
T

with w%AA; bacteria taken from literature (Purser and Buechler, 196
6).

QUANTIFICATION AND STATISTICAL ANALYSIS

A two-tailed, unpaired student’s t-test was used to calculate P values, with P < 0.05 used to determine statistical significance.
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Figure S1. Microbiome consumes dietary fiber and protein, related to Table 1

(A) Composition of the measured portal microbial metabolome. The pie charts show the relative molar abundance of different gut microbiota-associated me-

tabolites in mice (n = 6 mice).

(B) As in (A), for cecal-content microbial metabolome (n = 6 mice).

(C) Experimental scheme. Mice received an oral gavage of 4:2:1 starch: protein (or free amino acids): inulin by weight. In each dietary condition, one component

was 13C-labeled. After gavage of the labeled meal, tissue and serum metabolite labeling were measured over time by LC-MS.

(D) Dietary starch feeds the host, whereas dietary inulin feeds the microbiome. The data show concentrations of labeled carbons in hexose in portal circulation

(mean ± SE, n = 3 mice).

(E) As in (D), for acetate (mean ± SE, n = 3 mice).

(F) Heatmap showing the percentage of labeled carbon atoms in the indicated metabolites in portal circulation, following gavage of 4:2:1 starch: protein: inulin,

with the indicated nutrient labeled. Each data point is median of n = 3 mice.

(G) Heatmap showing themolarity of total labeled carbon atoms in the indicatedmetabolites in cecal content, following gavage of 4:2:1 starch: protein: inulin, with

the indicated nutrient labeled. Each data point is the median of n = 3 mice.

(H) Metabolic fate of inulin and starch. Stacked bars show the fraction of gavaged inulin and starch that is converted into each of the indicatedmetabolic products,

with the undigested fraction being excreted in the feces (mean ± SE, n = 3 mice).

(I) Undigested carbohydrate in the feces. Graph shows the fraction of labeled hexose after cecal-content hydrolysis, 12 h following gavage as above (mean ± SE,

n = 3 mice).

(J) Dietary amino acids feed the host, whereas dietary algal protein feeds the microbiome. The data show concentrations of labeled carbons in valine in portal

circulation (mean ± SE, n = 3 mice).

(K) As in (J), for acetate (mean ± SE, n = 3 mice).

(L) Heatmap showing the percentage of labeled carbon atoms in the indicated amino acids in portal circulation, following gavage of 4:2:1 starch: protein (or free

amino acids): inulin, with the indicated nutrient labeled. Each data point is median of n = 3 mice.

(M) Heatmap showing the molarity of total labeled carbon atoms in the indicated amino acids in cecal content, following gavage of 4:2:1 starch: protein (or free

amino acids): inulin, with the indicated nutrient labeled. Each data point is median of n = 3 mice.
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Figure S2. Circulating ammonia contributes to microbiota metabolism via circulating urea, related to Figure 1

(A) Normalized labeling of serum urea, ammonia, and fecal amino acids after 15N-urea infusion (mean ± SE, n = 4 mice). Feces labeling fraction is normalized to

serum-infused tracer (urea) labeling fraction.

(B) As in (A), for 15N-ammonia infusion (mean ± SE, n = 5 mice).

(C) Experimental design. Gnotobiotic mice colonizedwith urease-negative bacteria (C. sporogenes,B. Dorei, and E. coli) or a combination of urease-negative and

-positive bacteria (C. sporogenes, B. dorei, E. coli, L. reuteri, and S. aureus) were intravenously infused with 15N-urea for 24 h. Labeling of cecal-content amino

acids was measured by LC-MS.

(D) Normalized labeling of cecal ammonia and amino acids after 15N-urea infusion in urease-negative bacteria colonized gnotobiotic mice and urease-positive

and -negative bacteria colonized gnotobiotic mice (mean ± SE, n = 3 mice). * p < 0.05, ** p < 0.01, and *** p < 0.001 by two-sided Student’s t test.

(E) Ammonia concentration in systemic circulation and cecal content (mean ± SE, n = 5 mice).

(F) As in (E), for urea (mean ± SE, n = 5 mice).

(G) Calculation of the indirect contribution from circulating ammonia to fecal amino acids via circulating urea.

(H) Contribution of circulating ammonia to fecal amino acids is quantitatively explained by ammonia’s labeling of circulating urea; i.e., occurs via the indirect route

shown in gray in (G) (mean ± SE, n = 4 mice).

(I) Normalized labeling of fecal ammonia and amino acids after 15N-urea infusion in control and antibiotics-treated mice (mean ± SE, n = 3 mice). * p < 0.05,

** p < 0.01, and *** p < 0.001 by two-sided Student’s t test.

(J) Normalized labeling of fecal ammonia after 15N-ammonia infusion in control and antibiotics-treated mice (mean ± SE, n = 5 for control mice, n = 4 for anti-

biotics-treated mice). ** p < 0.01 by two-sided Student’s t test.

(K) Schematic of the pathway from circulating ammonia to luminal ammonia.
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Figure S3. Quantitative analysis of microbiome amino acid metabolism, related to Figure 2

(A) Labeling fraction of cecal amino acids from 12 or 24 h 13C-algal protein feeding. Mean ± SE, n = 4 mice.

(B) Contribution of dietary and circulating nutrients to cecal amino acid carbon in antibiotic-treated mice. Mean ± SE, n = 3 mice.

(C) As in (B), for nitrogen.

(D) Cecal amino acids concentration fold change in antibiotic-treatedmice relative tomock-treatedmice.Mean ±SE, n = 3. TCA-related amino acids are shown in

blue bars and the others are shown in gray bars.

(E) Cecal amino acids coming directly from diet tend to go up with antibiotic treatment. Plot shows the correlation, across amino acids (each point is an individual

amino acid), between concentration fold change in antibiotic-treated mice and carbon contribution from dietary proteins based on isotope tracing (without any

antibiotic treatment).

(F) As in (D), for germ-free mice relative to conventional mice. Mean ± SE, n = 3. TCA-related amino acids are shown in blue bars, and the others are shown in

gray bars.

(G) As in (E), for germ-free mice.

(H) Schematic of the possibility for dietary protein nitrogen to contribute to cecal amino acid nitrogen via circulating urea.

(I) Contribution from dietary proteins to cecal amino acid nitrogen is mostly independent of circulating urea. Mean ± SE, n = 3.

(J) Cecal amino acid isotopic labeling forms from 13C,15N-algal protein feeding. Mean ± SE, n = 3.

(K) Cecal amino acid isotopic labeling forms from 13C-inulin feeding. Mean ± SE, n = 3.

(L) Total ion chromatogram of [13C5,
15N1]glutamate and [13C4,

15N1]aspartate from simultaneous 15N-urea infusion and 13C-protein feeding (relative to the 15N-urea

infusion or 13C-protein feeding, separately).

(M) Amino acids synthesized in the gut microbiome stay in the microbiome, as urea contributes to microbiome amino acids but not host circulating amino acids.

Mean ± SE, n = 4 mice.
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Figure S4. Sources of cecal metabolites and acyl-glycines, related to Figure 2 and Table 1

(A) Heatmaps showing the contribution of dietary or circulating nutrients to cecal metabolites. For experimental design, see Figure 3. n = 4 mice.

(B) Experimental design. Mice were intravenously infused with [U-13C] glycine for 2.5 h, and tissue and serum glycine and acyl-glycine labeling were measured.

(C) Circulating acyl-glycines are made from circulating glycine. Mean ± SE, n = 4 mice.

(D) Tissue phenylpropionyl-glycine labeling (normalized to circulating glycine labeling). Mean ± SE, n = 4 mice.

(E) Tissue butyryl-glycine labeling (normalized to circulating glycine labeling). Mean ± SE, n = 4 mice.

(F) Amino acid composition of algal protein and casein measured by acid hydrolysis. Mean ± SE, n = 3 for algal protein and n = 1 for casein.

(G) Contribution of dietary algal protein versus casein to cecal amino acid carbon correlates poorly with relative amino acids abundances in algal protein versus

casein.
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Figure S5. Single exponential fit of newly synthesized fraction of microbial peptides over time, related to Figure 4

(A) Growth rate quantification using D2O in vitro.Clostridium sporogenes orBacteroides doreiwere cultured inmedia with 5%D2O, and bacteria growth over time

was measured by either OD600 or proteomics.

(B) Proteomics-measured growth rate mirrors the growth rate measured by OD600. Mean ± SE, n > 200 characteristic peptides for each time point.

(C) As in (B), for Bacteroides dorei.

(D) Different cellular compartments from the genus Bacteroides show similar labeling rate.

(E) As in (D), for genus Ruminococcus.

(F) Single exponential fit was applied to determine genus-level microbial turnover. Data are mean ± SE, n = 5 mice.
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Figure S6. Species-level and correlation analysis of nutrient preferences across different gut bacteria, related to Figures 5 and 6

(A) Carbon contribution of dietary inulin across bacterial species. Mean ± SE, n = 4 mice.

(B) Carbon contribution of dietary algal protein across bacterial species. Mean ± SE, n = 6 mice.

(C) Carbon contribution of circulating lactate across bacterial species. Mean ± SE, n = 7 mice.

(D) Nitrogen contribution of circulatory urea across bacterial species. Mean ± SE, n = 6 mice.

(E) Nitrogen contribution of dietary algal protein across bacterial species. Mean ± SE, n = 6 mice.

(F) Carbon contribution of secreted host proteins across bacterial species. Mean ± SE, n = 5 mice.

(G) Positive correlation between dietary protein nitrogen and carbon contributions across bacterial genera.

(H) Positive correlation between inulin carbon contribution and urea nitrogen contribution in Firmicutes.

(I) Negative correlation between urea nitrogen contribution and dietary nitrogen contribution in Firmicutes.

(J) Negative correlation between diurnal growth rate variability and host secreted protein nitrogen contribution across bacterial genera.

(K) Positive correlation between diurnal growth rate variability and dietary protein nitrogen contribution across bacterial genera.
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Figure S7. Hostmucins are synthesized using circulating host amino acids and eventually contribute to fecal amino acids, related to Figure 6

(A) Experimental design. Mice were infused with 15N-lysine and 15N-arginine, and mouse colon proteins were analyzed by proteomics.

(B) MUC2 labeling (multiple different MUC2 peptides). n = 2 mice for 12 and 18 h, n = 3 mice for 36 h.

(C) As in (B), for MUC3.

(D) As in (B), for MUC13.

(E) Passage of circulating amino acids from serum into host colonic protein and from there into host proteins and finally fecal free amino acids. Figure shows the

enrichment of serum AA, colonic MUC2 proteins, host proteins in intestinal lumen, and fecal AAs normalized to the serum AA enrichment at 36 h following
15N-lysine and 15N-arginine infusions. Mean ± SE, n = 2mice for 12 and 18 h, n = 3mice for 36 h for serum and fecal AAs. n = 14 characteristic MUC2 peptides for

12 and 18 h, n = 28 characteristic MUC2 peptides for 36 h. n > 50 characteristic peptides for host proteins in intestinal lumen for 12, 18, and 36 h.
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