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Abstract: The Extracellular signal Regulated Kinase (ERK) controls multiple critical processes in 

the cell and is deregulated by mutations in human cancers, congenital abnormalities, immune 

diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual 

phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential 

Michaelis-Menten (MM) steps. The estimation of individual reaction rate constants from kinetic 

data in the full mechanism has proved challenging. Here, we present an analytically tractable 

approach to parameter estimation that is based on the phase plane representation of ERK 

activation and yields two combinations of six reaction rate constants in the detailed mechanism. 

These combinations correspond to the ratio of the specificities of two consecutive 

phosphorylations and the probability that monophosphorylated substrate does not dissociate from 

the enzyme before the second phosphorylation. The presented approach offers a language for 

comparing the effects of mutations that disrupt ERK activation and function in vivo. As an 

illustration, we use the phase plane representation to analyze dual phosphorylation under 

heterozygous conditions, when two enzyme variants compete for the same substrate. 

Introduction 

Several essential processes in the cell, including protein synthesis, gene regulation, and energy 
metabolism, require activity of the Extracellular signal Regulated Kinase (ERK) (1, 2). This highly 
conserved enzyme is activated by cell surface receptors, such as receptor tyrosine kinases, which 
trigger phosphorylation and activation of a dual specificity kinase, MEK, which has ERK as its 
only substrate (3–5). MEK phosphorylates, in strict order, tyrosine and threonine residues in the 
TEY sequence within the activation loop of ERK. These phosphorylations induce a conformational 
change which activates ERK and cause dissociation of the ERK/MEK complex, enabling ERK to 
phosphorylate a broad spectrum of substrates (Fig. 1A) (6). Given its critical roles in cell 
regulation, it is unsurprising that mutations affecting either MEK or ERK can lead to diseases. 
Indeed, dozens of MEK and ERK variants have been documented in human cancers, congenital 
abnormalities, immune diseases, and neurodevelopmental syndromes (7–11).  

Most pathogenic variants of MEK and ERK have amino acid substitutions in different parts of 
these proteins. Investigating the effects of these sequence changes leads to questions at multiple 
levels of biological organization (7, 12–15): What happens to the structure and dynamics of the 
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molecule harboring a substitution? What are the effects of these changes on the mechanisms 
and rates of reactions in which this molecule participates? How do these changes affect the 
dynamics of biochemical networks constructed from these reactions? What are the effects of 
network-level changes on cellular processes, such as cell differentiation and growth? Going 
further, what are the effects of cellular level changes on tissues and organs?  

The dynamics of ERK phosphorylation follows a simplified mechanism with two sequential 
Michaelis-Menten steps (Fig. 1B,C) (4). The simplifications include a coarse-grained description 
of the ERK/MEK association and ATP/ADP exchange. Even with these simplifications, there are 
six rate constants that prove hard to estimate with high confidence based on the measured time 
courses (16). This difficulty in solving the inverse kinetics problem is a generic feature of 
multiparameter dynamic models (17). Here, we offer a parameter estimation approach that 
addresses some of these challenges, focusing on studies that reconstitute ERK regulation in vitro 
(18). We focus on experiments in which pre-activated MEK, either wild type or containing a 
pathogenic substitution, is added to a mixture of unphosphorylated ERK with excess ATP, 
initiating gradual conversion of ERK to the dually phosphorylated state (dpERK) (Fig. 1D) (19).  

In contrast to most parameter estimation studies, which fit the time series data, we use the phase 
plane representation of dynamics. The term phase plane is from classical mechanics, where the 
state of a system with N particles is fully described by a point 6N-dimensional phase space, where 
coordinates correspond to particles’ positions and velocities. For a single particle moving in one 
dimension, the phase space becomes a phase plane. To make things concrete, consider a ball 
that moves under the action of gravity after being thrown upwards from height 𝑦0 with initial 

velocity 𝑣0. The time-dependent trajectory of this ball traces out the following curve in the phase 

plane: 𝑦(𝑣) = 𝑦0 + 𝑣0
2 2𝑔⁄ − 𝑣2 2𝑔⁄ , which is of course a locus of constant energy and can be 

derived without having explicit expression for the time-dependence of the ball’s velocity and 
position. Below, we derive the phase plane representation for the temporal progress of ERK 
phosphorylation by MEK and demonstrate how it can be used to analyze kinetic data and interpret 
the effects of mutations.  

Results 

Phase plane dynamics of dual phosphorylation 

We start with a mass-action model of a kinetic experiment in which active MEK is added to 

unphosphorylated ERK (4, 5). The concentrations of MEK and ERK are denoted by 𝐸𝑇 and 𝑆𝑇, 

respectively. The composition of the reaction mixture is described by six concentrations, 

corresponding to the free enzyme (𝐸), three phosphorylation states (𝑆0, 𝑆1, 𝑆2), and two enzyme-

substrate complexes (𝐶0, 𝐶1). Since ERK activation follows an ordered mechanism, 𝑆1, 

corresponds to ERK phosphorylated on a tyrosine residue within the activation loop (Fig. 1A, B). 

When monophosphorylated substrate does not dissociate from the enzyme before the next 

phosphorylation, dual phosphorylation is called processive (4, 20); otherwise, it is called 

distributive (Fig. 1C).  

At the start of the experiment,  𝑆0(0)= 𝑆𝑇, 𝐸(0)= 𝑆𝑇, and all other concentrations are equal to zero. 

Since there are two conservation laws: 𝐸𝑇 = 𝐸(𝑡) + 𝐶0(𝑡) + 𝐶1(𝑡) and 𝑆𝑇 = 𝑆0(𝑡) + 𝑆1(𝑡) + 𝑆2(𝑡) +

𝐶0(𝑡) + 𝐶1(𝑡), the composition of the system is described by four differential equations: 

𝑑𝑆0

𝑑𝑡
= −𝑘𝑏,1𝑆0 × 𝐸 + 𝑘𝑑,1𝐶0, 𝑆0(0)= 𝑆𝑇, 

𝑑𝐶0

𝑑𝑡
= 𝑘𝑏,1𝑆0 × 𝐸 − 𝑘𝑑,1𝐶0 − 𝑘𝑐,1𝐶0, 𝐶0(0) = 0, 
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𝑑𝐶1

𝑑𝑡
= 𝑘𝑏,2𝑆1 × 𝐸 − 𝑘𝑑,2𝐶1 + 𝑘𝑐,1𝐶0 − 𝑘𝑐,2𝐶1, 𝐶1(0) = 0, 

𝑑𝑆1

𝑑𝑡
= −𝑘𝑏,2𝑆1 × 𝐸 + 𝑘𝑑,2𝐶1, 𝑆1(0)= 0, 

with 𝐸(𝑡) and 𝑆2(𝑡) obtained from the conservation laws.  

Next, we use a steady state approximation for complexes, which is valid when 𝑆𝑇 ≫ 𝐸𝑇 (16, 21), 

and rescale the problem as follows: 𝜏 ≡ 𝑡 × 𝑘𝑐,1 ×
𝐸𝑇

𝑆𝑇
, 𝑥 ≡

𝑆0

𝑆𝑇
, 𝑦 ≡

𝑆1

𝑆𝑇
 . This leads to the following 

reduced model: 

𝑑𝑥

𝑑𝜏
= −

𝑥

𝛼𝑥+𝛽𝑦+𝛾
, 𝑥(0)= 1, 

𝑑𝑦

𝑑𝜏
=  

𝛿𝑥−𝜀𝑦

𝛼𝑥+𝛽𝑦+𝛾
, 𝑦(0)= 0. 

The five dimensionless parameters in these equations are defined as follows:   

𝛼 ≡
𝑘𝑐,1 + 𝑘𝑐,2 + 𝑘𝑑,2

𝑘𝑐,2 + 𝑘𝑑,2
, 𝛽 ≡

𝐾𝑀,1

𝐾𝑀,2
, 𝛾 ≡

𝐾𝑀,1

𝑆𝑇
, 𝛿 ≡

𝑘𝑑,2

𝑘𝑐,2 + 𝑘𝑑,2
, 𝜀 ≡ (

𝑘𝑐,2

𝐾𝑀,2
) (

𝑘𝑐,1

𝐾𝑀,1
)⁄ ,  

where  𝐾𝑀,1(2) are the Michaelis constants of the two phosphorylation steps: 𝐾𝑀,1(2) =
𝑘𝑐,1(2)+𝑘𝑑,1(2)

𝑘𝑏,1(2)
.  

The two equations can be combined into a single ODE for the dependence of the 

monophosphorylated concentration on the unphosphorylated concentration:  

𝑑𝑦

𝑑𝑥
= 𝜀

𝑦

𝑥
− 𝛿, 𝑦(1)= 0. 

This equation has a closed form solution: 

𝑦(𝑥; 𝛿, 𝜀) =
𝛿

1 − 𝜀
(𝑥𝜀 − 𝑥), 

which describes the trajectory that joins the fully unphosphorylated and dually phosphorylated 

states, going through a peak at 𝑥𝑚𝑎𝑥 = 𝜀
1

1−𝜀,   𝑦𝑚𝑎𝑥 = 𝛿𝜀
𝜀

1−𝜀.  

The derived expression depends on two dimensionless groups. The first group, 𝛿, is the 

probability that the newly formed complex of the enzyme and monophosphorylated substrate 

dissociates before the substrate is phosphorylated the second time (22–24). Note that 1 − 𝛿 is 

the probability that both phosphorylations happen within the same enzyme-substrate binding 

event (also known as the processivity). As a consequence, 𝛿 is the probability of the distributive 

reaction channel. The second group, 𝜀, is the ratio of the second order rate constants (also known 

as enzyme specificities) for two the enzymatic reactions, quantifying how the unphosphorylated 

and monophosphorylated substrates compete for their common enzyme. Supplementary figure 1 

shows the plots of the derived expression for different choices of 𝛿 and 𝜀. We see that 𝛿 simply 

scales the curve the shape of which is determined by 𝜀.  

Using phase plane representation for parameter estimation 

The phase plane trajectory, which uses a single curve to show how the amounts of 

unphosphorylated and monophosphorylated ERK vary in relation to one another across time (Fig. 
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2A-D, Fig. S2A-B), provides a convenient way for analyzing the kinetics of ERK phosphorylation. 

The convenience comes from the fact that it is insensitive to errors in estimating the times at which 

the reaction has been stopped and is independent of 𝛾, both of which depend on the experimental 

choice of substrate concentration. The probability of the distributive reaction channel (𝛿) and the 

ratio of the two specificities (𝜀) can be readily estimated from kinetic data. As an illustration, we 

show the nonlinear least squares fits to the data from our earlier experiments where ERK was 

phosphorylated by either wild type MEK or one of the three MEK variants from human diseases 

(19, 25, 26). Each of these variants has a single amino acid substitution: the E203K variant was 

identified in melanoma (Fig. 2B), while the Y130C and F53S variants were identified in the 

cardiofaciocutaneous syndrome (CFCS) (Fig. 2C, D). The cancer mutant has a strongly reduced 

probability of distributed phosphorylation, whereas the CFCS variants are indistinguishable from 

the wild type, at least with respect to their ability to directly phosphorylate ERK(Fig. 2A-D). 

Understanding these effects in vivo requires carrying out similar analyses for other reactions 

involving MEK, including their activation by Raf, dephosphorylation by phosphatases, and 

degradation by proteases (7, 27, 28).   

The proposed approach to kinetic data analysis will not work when a mutation changes the 

mechanism of phosphorylation from a strictly ordered to random and the dynamics can no longer 

be analyzed in terms of a two-dimensional trajectory. However, it shows how one can make 

progress in model-based data analysis even when individual rate constants cannot be 

constrained. One can appreciate this advance by examining the results of nonlinear fits to data 

using the full, six-parameter model. To that end, we sampled six-dimensional parameter space to 

generate the initial guesses for the nonlinear least squares algorithm that converged to local 

minima of the objective function. Fig. 3 displays the marginal distribution functions for the six rate 

constants from multiple minima identified by the algorithm. The individual rate constants are not 

constrained, which makes the full model not useful for comparing different variants, highlighting 

the value of the presented phase plane analysis.  

The linearized form of the model is obtained when 𝛼𝑥 + 𝛽𝑦 ≪ 𝛾. This case is realized when most 

enzyme molecules are not bound to substrates and their concentration can be assumed constant 

throughout the transformation from the unphosphorylated to dually phosphorylated state. In this 

case, the equations for the three phosphostates become: 

𝑑𝑆0

𝑑𝑡
= −𝜅1𝑆0, 𝑆0(0)= 𝑆𝑇 , 

𝑑𝑆1

𝑑𝑡
= −𝜅2𝑆1 + 𝛿𝜅1𝑆0, 𝑆1(0)= 0, 

𝑑𝑆2

𝑑𝑡
= 𝜅2𝑆1 + (1 − 𝛿)𝜅1𝑆0, 𝑆2(0)= 0, 

where 𝜅1,2 ≡
𝑘𝑐,1(2)

𝐾𝑀,1(2)
𝐸𝑇. The linear model can be used to fit the time series, yielding the estimates 

for the specificities of individual phosphorylation steps and the probability the distributive reaction 

channel (19). The validity of this model depends on the assumption of linearity, which might be 

hard to justify. We realized that since our phase plane approach is free from these assumptions, 

it can provide an independent test of the linear model. Specifically, when the values of 𝛿 and 𝜀 

obtained by fitting the data as a phase plane trajectory and as time series are close to each other, 

we have an additional argument in favor of the linear model. We found that this is indeed the 

case. Fitting the linear model to the wild type time series data, we found that both mean and 
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standard deviation values for 𝛿 (0.80, 0.18) and 𝜀 (0.80,0.53) are close to the wild type values 

shown in Fig. 2A. This justifies the use of a linear model in our earlier work (19). 

Phase plane analysis of heterozygous systems 

Once kinetic properties of individual variants are understood, one can ask what happens when 

two different variants are present in the same reaction system, as occurs in the heterozygous 

conditions in diseases associated with gain-of-function mutations in MEK (Fig. 4A) (29). The fact 

that even a single copy of a mutant gene can cause a phenotype poses interesting theoretical 

questions about heterozygous enzyme networks. Most modeling papers on heterozygosity focus 

on loss-function mutations (30–33). Such systems can be adequately modeled by changing the 

enzyme (or substrate) dosage, which means that models established for the homozygous 

conditions still hold but operate in a different parameter regime. On the other hand, when two 

different variants are simultaneously present, the model is different as one must consider more 

species and reaction paths. This is true even for the simple case of ordered ERK phosphorylation. 

When only one variant is present, an ERK molecule can arrive to its dually phosphorylated state 

via two different paths, depending on whether it dissociates from MEK after the first 

phosphorylation. In a heterozygous mixture, both of these paths are present (for each variant), 

but there are also two new paths, in which the first and second phosphorylation steps are carried 

out by different enzyme variants (Fig. 4B).   

Our phase plane analysis for homozygous systems can be applied to heterozygous conditions. 

Consider a mixture in which two MEK variants (wild type, “w”, with total concentration 𝑊𝑇, and 

mutant “m”, with total concentration 𝑀𝑇) are phosphorylating ERK. Using the same 

nondimensionalization as for the wild type system and eliminating the enzyme-substrate 

complexes, we arrive at the following model for the nondimensionalized concentrations of the 

unphosphorylated and monophosphorylated substrates: 

𝑑𝑥

𝑑𝜏
= − (

𝑥

𝛼𝑤𝑥+𝛽𝑤𝑦+𝛾𝑤
+ ρ

𝑥

𝛼𝑚𝑥+𝛽𝑚𝑦+𝛾𝑚
), 𝑥(0)= 1, 

𝑑𝑦

𝑑𝜏
= (

𝛿𝑤𝑥−𝜀𝑤𝑦

𝛼𝑤𝑥+𝛽𝑤𝑦+𝛾𝑤
+ ρ

𝛿𝑚𝑥−𝜀𝑚𝑦

𝛼𝑚𝑥+𝛽𝑚𝑦+𝛾𝑚
), 𝑦(0) = 0. 

All subscripted parameters have the same meanings as before, but must be evaluated for a 

specific variant. The new dimensionless group 𝜌 ≡
𝑀𝑇

𝑊𝑇

𝑘𝑐,,1,𝑚

𝑘𝑐,,1,𝑤
 quantifies the relative amounts of two 

variants, and the relative rates constants for the first catalytic steps. The phase plane dynamics 

for this system obeys the following differential equation: 

𝑥
𝑑𝑦

𝑑𝑥
= − 

(𝛿𝑤𝑥−𝜀𝑤𝑦)(𝛼𝑚𝑥+𝛽𝑚𝑦+𝛾𝑚)+ρ(𝛿𝑚𝑥−𝜀𝑚𝑦)(𝛼𝑤𝑥+𝛽𝑤𝑦+𝛾𝑤)

ρ(𝛼𝑤𝑥+𝛽𝑤𝑦+𝛾𝑤)+(𝛼𝑚𝑥+𝛽𝑚𝑦+𝛾𝑚)
, 𝑦(1) = 0.  

While we could not find a closed form solution, we can show that, as before, the trajectory starts 

at (1,0) and ends at (0,0), going through a maximum (𝑥𝑚𝑎𝑥
ℎ𝑒𝑡 , 𝑦𝑚𝑎𝑥

ℎ𝑒𝑡 ).  

Can this trajectory be approximated by a trajectory of an appropriately chosen homozygous 

system? We start with the case when both enzyme variants are operating far from saturation, 

which corresponds to 𝛾𝑤 , 𝛾𝑚 ≫ 1. The phase plane representation of the heterozygous dynamics 

can be shown to satisfy:  

𝑑𝑦

𝑑𝑥
= 𝜀ℎ𝑒𝑡

𝑦

𝑥
− 𝛿ℎ𝑒𝑡, 𝑦(1)= 0,  
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where 𝜀ℎ𝑒𝑡 =
𝜀𝑤+𝜌𝜀𝑚(𝛾𝑤 𝛾𝑚⁄ )

1+𝜌(𝛾𝑤 𝛾𝑚⁄ )
 and 𝛿ℎ𝑒𝑡 =

𝛿𝑤+𝜌𝛿𝑚(𝛾𝑤 𝛾𝑚⁄ )

1+𝜌(𝛾𝑤 𝛾𝑚⁄ )
. Thus, in this regime, there is an explicit 

connection between the effective parameters of individual variants and parameters of the effective 

homozygous model. Moreover, as 𝜌 is varied from zero to infinity, the effective parameters are 

linearly transformed between parameters of individual variants.  

To illustrate the derived expression for the effective heterozygous parameters, we predicted the 

phase plane trajectory of the heterozygous mixture of the wild type and E203K variants, which 

display significant differences in processivity. To compute the heterozygous trajectory, we set 𝜌 =

1, since the protein levels are the same, and took the limit when both 𝛾𝑚 and 𝛾𝑤 are large, since 

the quality of the linear model was found acceptable. The peak of the heterozygous trajectory is 

close to the peak of the wild type, but the amplitude is smaller.  

In general case, the phase plane trajectory for the heterozygous system can be found numerically, 

along with the corresponding value for (𝑥𝑚𝑎𝑥
ℎ𝑒𝑡 , 𝑦𝑚𝑎𝑥

ℎ𝑒𝑡 ).  One can then use this value to find the 

(𝜀ℎ𝑒𝑡 , 𝛿ℎ𝑒𝑡) pair hat has predicts the phase trajectory with the same maximum: 

𝑥𝑚𝑎𝑥
ℎ𝑒𝑡 = 𝜀ℎ𝑒𝑡

1

1−𝜀ℎ𝑒𝑡 ,      𝑦𝑚𝑎𝑥
ℎ𝑒𝑡 = 𝛿ℎ𝑒𝑡𝜀ℎ𝑒𝑡

𝜀ℎ𝑒𝑡
1−𝜀ℎ𝑒𝑡. 

Effectively, this procedure approximates dynamics of the 11-parameter heterozygous system by 

the 2-parameter homozygous system, although the explicit connection between (𝜀ℎ𝑒𝑡 , 𝛿ℎ𝑒𝑡) and 

parameters of the individual variants is lost. We evaluated the quality of this approximation by 

randomly generating heterozygous systems, finding the maxima of their phase plane trajectories, 

matching them by effective homozygous systems, and calculating the relative error; the quality of 

this approximation was excellent. We therefore conclude that heterozygous dynamics for this 

mechanism is always well approximated by an appropriately chosen homozygous model.  

Discussion 

For one-step enzymatic reactions, an enzyme/substrate pair is characterized by its specificity 
constant, 𝑘𝑐𝑎𝑡 𝐾𝑀⁄ , which provides a quantitative way for comparison of enzyme/substrate pairs. 
In writing this paper, we were motivated to understand what metrics can be used for such 
comparisons in more complex mechanisms, starting with a realistic case of two sequential 
phosphorylations by the same kinase. Our phase plane representation of dual phosphorylation 
dynamics identified two parameters that can be used to compare enzyme/substrate pairs, as long 
as they follow the same mechanism. One of them is the ratio of two enzyme specificities, the other 
is the probability of the distributive reaction channel. We illustrated our approach by analyzing 
data of ERK phosphorylation by the wild type and variant versions of MEK and suggest that it is 
already suitable for kinetic parameter estimation in other ordered sequential processes, such as 
ERK dephosphorylation by dual specificity phosphatases (34, 35). 

The fact that a well-studied model turned out to have an analytical solution was a pleasant 

surprise; nonetheless, the identification of key dimensionless groups is part and parcel of 

intelligent data analysis and could be attempted for a wider class of mechanisms. We found the 

two groups characterizing ordered dual phosphorylation through a nondimensionalization and 

steady state approximation, which might be too cumbersome for larger systems. However, our 

model and kinetic data offer a clear test case for data-driven efforts to automate the discovery 

and estimation of effective parameters in biochemical networks. A recent study took a step in this 

direction, using low-dimensional description of parameter ensembles generated by local 

minimization algorithms (36). This number of effective parameters needed to describe the data 
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for a given enzyme/substrate pair was found relatively straightforwardly, but the interpretability of 

these parameters and their use across enzyme-substrate pairs presents significant challenges. 

Our phase representation of dual phosphorylation dynamics also proved useful in thinking about 

heterozygous systems, where two different enzyme variants are competing for access to the 

same substrate. This framework could prove particularly relevant for disorders like melanomas 

where one copy of MEK has become overactive through mutation. By using such a model to 

quantitatively determine how the dynamics of ERK activation differ in the presence of an activating 

MEK mutation. like MEK E203K, one could better predict the results of therapeutic interventions, 

like the introduction of a RAF, MEK, or ERK inhibitor (37). When both enzyme variants follow the 

same mechanism, the heterozygous system is well-approximated by a homozygous system with 

appropriately chosen parameters. In other words, the presence of two enzyme variants does not 

introduce new effects. Future work will aim to find mechanisms where this is not true. In particular, 

we wonder whether one could provide an example where a system that can be ascertained to 

have only one stable steady state in homozygous conditions can give rise to multiple steady states 

or periodic oscillations when one of the reactions is catalyzed by two different variants. We leave 

this question as a challenge for scientists working on systems-level properties of biochemical 

networks (38, 39).  

Experimental Procedures 

All parameter values were determined using data from (19), in which 0.66 𝜇M MEK was combined 

with 5 𝜇M unphosphorylated ERK and concentrations of unphosphorylated (S0), 

monophosphorylated (S1), and dually phosphorylated (S2) ERK were tracked over 20 minutes, 

using Phos Tag Gels. Nonlinear least squares parameter fitting was done using the lsqcurvefit 

routine in MATLAB 2022a. The rate constants for the six-parameter model were found by fitting 

Eqs. 1-4 and the conservation equations for ST and ET to S2, S1, and S0 vs. time, using the 

objective function ∑ ∑ (𝑦𝑖𝑗 − 𝑥𝑖)2𝑁
𝑗=1

21
𝑖=1 , where 𝑦𝑖𝑗 is the value of data point 𝑖 (21 data points total 

with 3 phosphostates × 7 time points) for replicate 𝑗 (N = 12 for WT MEK, N = 5 for MEK E203K, 

N = 5 for MEK Y130C, and N = 5 for MEK F53S) and 𝑥𝑖 is the value of data point 𝑖 predicted by 

the model. For the two-parameter model, values for 𝜖 and 𝛿 were found by fitting equation 8 to S1 

vs. S0 data using the objective function ∑ ∑ (𝑦𝑖𝑗 − 𝑥𝑖)2𝑁
𝑗=1

7
𝑖=1  where 𝑦𝑖𝑗 is the value of data point 𝑖 

(7 time points) for replicate 𝑗 (N = 12 for WT MEK, N = 5 for MEK E203K, N = 5 for MEK Y130C) 

and 𝑥𝑖 is the value of data point 𝑖 predicted by the model. For each model 1000 fits were 

performed, with guesses selected by random sampling from a uniform or log-uniform distribution 

bounded by the values listed in Supplemental Table 1.  

Data availability 

All data are available in the manuscript.  
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Figure legends 

Figure 1. Kinetic mechanism of dual phosphorylation of ERK by active MEK: (A) MEK 

activates ERK by ordered dual phosphorylation of tyrosine and threonine amino acids within the 

activation loop of ERK. (B) Mechanism of ERK activation by MEK can be modelled by two 

sequential Michaelis-Menten steps. (C) Schematic representation of processive and distributive 

dual phosphorylation channels. (D) Time courses showing the concentrations of 

unphosphorylated (S0), monophosphorylated (S1), and dually phosphorylated ERK (S2) generated 

by a mixture of 0.67 𝜇M of activated MEK, 0.67 𝜇M total ERK, and 5 mM ATP. S0, S1, and S2 

concentrations were monitored using phos-tag gel electrophoresis, as described in (19). The error 

bars indicate the standard deviation of 12 replicates. Data is from (19) 

Figure 2. Two-parameter model fit to ERK phosphorylation trajectories. A) Phase plane 

trajectory of ERK phosphorylation by WT MEK (gray). Average S0 and S1 values are plotted for 7 

time points. The standard deviation in S0 and S1 for each time point is shown (NWT = 12). The 

solid line represents the model fit to data. S0 and S1 represent unphosphorylated and 

monophosphorylated ERK, respectively, normalized by the total amount of substrate. B-D) Model 

fits to the E203K, Y130C, and F53S trajectories (NE203K = 5; NY130C = 5; NF53S = 5). Best fit values 

are displayed along with their 95% confidence intervals. 

Figure 3. Summary of nonlinear least square fits with the six-parameter and two-parameter 

models. The six histograms labeled 𝑘𝑏,1, 𝑘𝑑,1, 𝑘𝑐,1, 𝑘𝑏,2, 𝑘𝑑,2, and 𝑘𝑐,2 show the marginal 

distributions of each parameter obtained by fitting the six-parameter model to wild type MEK data. 

The central contour plot corresponds to the best fit using a 2-parameter model. Gray arrows 

indicate which parameters from the original model contribute to the two parameters of the reduced 

model. The contour plot axes represent the values of each of the two parameters, and contour 

lines correspond to different values of the squared norm of the residual for 96 data points (12 

replicates, 7 time points per replicate) of the wild type MEK data. The red dot at 𝛿 = 0.81, 𝜖 = 0.81 

marks the best fit for wild type MEK.  

Figure 4. Dual phosphorylation in heterozygous conditions. (A) Kinetic model of dual 

phosphorylation of a single substrate by an equimolar mixture of the wild type (W) and mutant (M) 

enzyme variants. Each phosphorylation step is still modelled by a Michaelis-Menten mechanism, 

but can be carried by either the wild type of mutant enzyme variants. (B) Schematic representation 

of six paths connecting the unphosphorylated (S0) and dually phosphorylated (S2) 

phosphostates.  (C) Predicted phase plane trajectory of the 1:1 mixture of the wild type and E203K 

MEK variants (red) plotted together with the phase trajectories of pure wild type (black) and pure 

E203K MEK (orange). 
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