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Mitochondrial ATP generation is more
proteome efficient than glycolysis
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Metabolic efficiency profoundly influences organismal fitness. Nonphoto-
synthetic organisms, from yeast to mammals, derive usable energy
primarily through glycolysis and respiration. Although respiration is
more energy efficient, some cells favor glycolysis even when oxygen is
available (aerobic glycolysis, Warburg effect). A leading explanation
isthat glycolysis is more efficient in terms of ATP production per unit
mass of protein (that is, faster). Through quantitative flux analysis and
proteomics, we find, however, that mitochondrial respiration is actually
more proteome efficient than aerobic glycolysis. This is shown across
yeast strains, T cells, cancer cells, and tissues and tumors in vivo. Instead
of aerobic glycolysis being valuable for fast ATP production, it correlates
with high glycolytic protein expression, which promotes hypoxic growth.
Aerobic glycolytic yeasts do not excel at aerobic growth but outgrow
respiratory cells during oxygen limitation. We accordingly propose that
aerobic glycolysis emerges from cells maintaining a proteome conducive
toboth aerobic and hypoxic growth.

Cells can generate ATP via fermentation (glycolysis) or respiration.
Respiration generates around tenfold more ATP per glucose. However,
many fast-growing cells favor glycolysis (‘Crabtree effect’ leading to eth-
anolinyeast or ‘Warburg effect’ leading to lactate in cancer orimmune
cells)'>. This metabolic shift is often assumed to be due to glycolysis
being more enzyme efficient or proteome efficient®®. Specifically, it
is often believed that, compared to respiration, fermentation is capa-
ble of producing ATP faster per unit enzyme expression’ . Proteome
efficiency is evolutionarily advantageous because cells have limited

biosynthetic capacity (for example, ribosomes) to make enzymes and
physical space to house them (constrained proteome capacity”*'*").
If cells can achieve the same metabolic flux while using less enzyme,
this allows them to grow faster.

The proteome efficiency of glycolysis versus respiration has been
experimentally tested carefully in Escherichia coli. Like yeast, E. coli
tend to switch from respiration to aerobic glycolysis as their growth
accelerates. Unlike yeast, however, aerobic glycolytic E. coliengage in
amixture of glycolytic and respiratory ATP generation, excreting the
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Fig.1| Central carbon metabolic fluxes and ATP sourcesinyeastand T cells.

a, Flux map of central carbon metabolism (in units of mmol per h per gDW)

inl. orientalis and S. cerevisiae (strain CEN.PK) during aerobic exponential growth
in yeast nitrogen base (YNB) medium with 20 g1 glucose; u, growth rate; G6P,
glucose-6-phosphate; P, phosphate; EtOH, ethanol; AceAld, acetaldehyde;

OAA, oxalacetic acid; AcCoA, acetyl-CoA; a-KG, a-ketoglutarate; PPP, pentose
phosphate pathway. b, Flux map of central carbon metabolism (in units of

0.1 mmol per h per gDW) in naive mouse T cells (maintained with interleukin-7
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(IL-7)) or activated T cells (24-h activation by anti-CD3 and anti-CD28 with IL-2).
Theinsets show ATP fluxes from glycolysis (glyc) and respiration (resp). Numbers
are best-estimate fluxes from large-scale ®*C-informed MFA, constrained by
metabolite ®Clabeling ([U-2C,]glucose and [1,2-C,]glucose for all cell types

as well as [U-2C;]glutamine for T cells, each with n =3 or 4 biological replicates)
and metabolite consumption and excretion rate measurements (n = 3 biological
replicates for yeastand n > 6 for T cells).

oxidized product acetate with four glycolytic NADH feeding into the
electron transport chain for each glucose (versus zero NADH in yeast
ormammals). This provides an aerobic glycolytic ATP yield of about 12
per glucose (versus 2 inyeast or mammals). Such acetate fermentation
is favored over full respiration for its proteome efficiency””.

Duetothe muchlower ATPyield of eukaryotic aerobic glycolysis,
the proteome efficiency of glycolysis versus mitochondrial respira-
tion remains unclear. To address this, here we integrate quantitative
fluxomics and proteomics to measure the proteome efficiency of
ATP generation in yeasts and mammals. The quantified proteome
efficiencies reflect what the cell gains in terms of ATP for its overall
proteininvestment in the pathway and thus is suppressed if the path-
way is not fully used, for example, due to limited substrate demand
or levels of one or more gating enzymes. We carefully study naive and
activated T cells and two industrially important yeasts (Saccharomy-
ces cerevisiae and Issatchenkia orientalis, separated by 200 million
years of evolution)®°, Across these cell types, proteome efficiency
of respiration was consistently equal to or greater than glycolysis.
Integrating data from the literature, we then expand this analysis to
cancer cells and to tissues and tumors in vivo, finding superior pro-
teome efficiency of respirationinall aerobic settings. Consistent with
the high proteome efficiency of respiration, across 23 evolutionarily
divergent yeast species, the fastest-growing yeast were respiratory,
with aerobic glycolytic yeast selectively favored during oxygen limi-
tation. Aerobic glycolytic cells displayed a large glycolytic proteome
even under fully aerobic conditions. These data support aerobic gly-
colysis being intrinsically inefficient from both the energy and pro-
teome perspectives and emerging as a consequence of some cells
maintaining a glycolytic proteome that enables efficient growth also
during hypoxia.

Results

Quantitative flux analysisinyeastand T cells

Wefirst sought to carefully measure the proteome efficiency of glyco-
lysis versus respirationin two budding yeasts (baker’s yeast S. cerevisiae
strain CEN.PK and a yeast used industrially for organic acid produc-
tion, /. orientalis SD108) and in naive and activated mouse CD8" T cells.
Analogous to specific enzyme activity, measurement of proteome
efficiency requires two key inputs: reaction velocities (metabolic fluxes)
and enzyme abundances.

To obtain metabolic fluxes at the systems level, we performed *C
metabolic flux analysis (MFA)? and developed large-scale metabolic
flux models with complete atom mappings for both yeast and mam-
malian cells (Fig. 1and Extended Data Figs. 1and 2; also see Methods,
BC Metabolic flux analysis). This approach carefully accounts for car-
bon fluxes devoted for both energy and biosynthesis. The models
were constrained by flux balance and by experimentally measured
extracellular fluxes, biomass synthesis fluxes and extensive isotope
labeling data (Extended Data Fig. 1a,d for yeast and Extended Data
Fig. 2a-e for T cells). This enabled comprehensive eukaryotic MFA.
The entire flux maps are available in the Supplementary Informa-
tion and can be visualized with Escher?® (https://escher.github.io;
see *C Metabolic flux analysis).

Metabolic fluxes diverged markedly between the two budding
yeasts, with /. orientalis more respiratory and S. cerevisiae more glyco-
lytic (Fig.1aand Extended DataFig.1c-e). /. orientalis grew faster than
S.cerevisiae (growth rate of u = 0.52 versus 0.39 h™), had faster pentose
phosphate pathway and biosynthetic fluxes, mainly generated ATP by
respiration via the tricarboxylic acid (TCA) cycle and oxidative phos-
phorylation (OXPHOS) and maintained cytosolic redox balance by feed-
ingNADH into the electrontransport chainvia quinone oxidoreductase
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Fig.2|Proteome allocation and proteome efficiency inyeast and T cells.

a, Mass fraction of proteome sectors of /. orientalis (1. 0.) and S. cerevisiae (S. c.) in
glucose batch culture as measured by quantitative LC-MS/MS proteomics. Data
areshownasmean +s.e.m.; n =4 biological replicates. b, Naive and activated
CD8' T cells. Culture conditions are as in Fig. 1; n = 3 biological replicates.
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d, Proteome efficiencies in yeast and T cells. Data are shown as mean + s.d., with
error propagated from flux confidence intervals (from n = 3 biological replicates)
and proteomics (n =4 biological replicates for yeastand n =3 for T cells).

(NDE). By contrast, S. cerevisiae engaged in prototypical aerobic gly-
colysis with a truncated TCA cycle. The aerobic glycolytic phenotype
was yet stronger in S. cerevisiae strain FY4, which has lab-acquired
mutations thatimpair respiration (Extended Data Fig. 1b). Consistent
with these findings, Nde knockout impaired growth of /. orientalis
but not S. cerevisiae® (Extended Data Fig. 1f). Overall, biosynthetic
fluxes account for 31% of glucose carbon in /. orientalis and only 9% in
S.cerevisiae (Extended Data Fig.1g). Among 11 key central metabolites,
only a-ketoglutarate in S. cerevisiae is mainly produced to fulfill bio-
synthetic demand (Extended Data Fig. 1h).

Similaranalysesinmouse CD8" T cells showed that, following in vitro
activation, ashiftfromnetlactate consumption toward aerobic glycolysis
occurred (Fig.1b and Extended DataFig. 2c). Cellmass tripled (Extended
DataFig.2e). Per cellweight, the median metabolic flux increased 8-fold,
with glycolysis (65-fold) up more than respiration (4-fold; Fig. 1b and
Extended DataFig. 2f,g). Inbothnaive and activated T cells, the TCA cycle
was largely driven by glutamine, not glucose® (Fig. 1b and Extended Data
Fig.2b). Resulting excess TCA cycle four-carbon units were drained by
extensive flux from malate to pyruvate, suggesting high malic enzyme
activity (Extended DataFig.2g,h), consistent with theimportance of malic
enzyme in maintaining T cell redox homeostasis®.

Theabove four cell types show distinct energy profiles, including
total ATP flux and how this ATP is produced (glycolysis or respiration).
Both the slow ATP-burning naive T cells and fast-burning /. orientalis
generated most of their ATP viarespiration (98% and 91%, respectively).
Activated T cells, despite excreting a majority of glucose carbon as
lactate, stillmade 58% of their ATP aerobically. Only S. cerevisiae used
glycolysis as its main ATP source, with 31% of ATP via respiration (Fig. 1).

Proteome allocationinyeastand T cells

We next assessed absolute protein abundances using quantitative
proteomics with a combination of intensity-based absolute quanti-
fication (IBAQ) and isobaric tandem mass tags (TMT) tagging®. Our
dataonS. cerevisiae are comparable tothosein prior literature reports
(Extended Data Fig. 3a). We then assembled this informationintoa
coarse-grained description of proteome composition focused on three
proteome sectors, whichtogether account for >80% of protein biomass:
nuclear (including proteins involved in transcription), translation and

metabolism (Fig. 2 and Extended Data Fig. 3b,c). Within metabolism,
we separately assessed the glycolytic and respiratory proteome. The
former contains proteins that perform14 reactions from glucose uptake
to organic waste production, and the latter includes all reactions in
OXPHOS and the TCA cycle (23 annotated reactions in yeast and 16
in T cells and, additionally for T cells, proteins involved in mitochon-
drial amino acid processes and fatty acid [3-oxidation; Extended Data
Fig.3b,c). The two yeasts had similar proteome compositions, with
the exception of repartitioning from respiratory (in /. orientalis) to
glycolytic (in S. cerevisiae; Fig. 2a). Pyruvate decarboxylase (ethanol
fermentation) in S. cerevisiae and ATP synthase (OXPHOS) in /. orientalis
arethe most highly expressed proteinsin the energetic pathways, each
accounting for more than 3% of the respective yeast’s total proteome
mass (Extended Data Fig.3b). Thus, proteome partitioning aligns with
metabolic preferencein S. cerevisiae and I. orientalis.

In T cells, after activation, on a per cell basis, there was about
fivefold expansion of both translational and metabolic machinery
(Extended Data Fig. 3¢c). The overall nature of the metabolic proteome
was largely unchanged and did not explain the induction of aerobic
glycolysis during T cell activation (Fig. 2b). Certaingating glycolytic pro-
teins, however, selectively increased after T cell activation®**, including
glucose transporter 1 (GLUT1) and hexokinase 2 (HK2; Extended Data
Fig.3c). Thus, naive T cells come preloaded with most of the machinery
foraerobic glycolysis, but glycolysis remains slow until energy demand
increases and/or these gating proteins are expressed.

Proteome efficiency of ATP-generating pathways

We next compared the proteome efficiency of glycolysis versus res-
piration, defined as the ATP generation flux per mass of all glycolytic
or respiratory enzymes, respectively (Fig. 2c). It is widely assumed
that glycolysis, at the expense of being less energy efficient, is more
proteome efficient than respiration®". Our data on ATP flux and pro-
tein abundance, however, revealed a different picture. In /. orientalis,
~90% of ATP was generated viarespiration (Fig. 1a), with the proteome
efficiency of respiration being more than fivefold higher than for glyco-
lysis (Fig. 2d). In aerobic glycolytic S. cerevisiae, despite itsrespiratory
machinery being minimally engaged under glucose surplus, the pro-
teome efficiency of respiration still slightly exceeded that of glycolysis
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Fig.3|Metabolic flux, proteome and proteome efficiency in yeast across
different nutrient conditions. a, Genome-wide metabolic fluxes (from
BC-informed MFA) from yeasts grown in nutrient-limited chemostats (limiting
nutrients: C (carbon/glucose), N (nitrogen/ammonia), P (phosphorus/
phosphate) or nutrient-replete batch culture (B)). Continuous cultures are
from four or five independent chemostats grown at different growth rates (u),
each shownindividually. Data are normalized to the geometric mean value

Growth rate (h™)

across different conditions within each yeast. b, ATP fluxes from glycolysis and
respiration across nutrient conditions. ¢, Mass fraction of eight proteome sectors
across nutrient conditions. d,e, Proteome efficiency of ATP production by
glycolysis (inyellow) and respiration (in blue) under glucose-deplete (carbon-
limited) or glucose-replete (all other chemostat) conditionsin /. orientalis (d) and
S. cerevisiae (e). Proteome efficiency is linearly regressed to growth rate, and the
slope (mean * s.e.) in units of mol ATP per gProteinis shown.

(Fig. 2d). In highly respiratory naive T cells, the proteome efficiency
of respiration was more than 40-fold that of glycolysis, whereasin the
moreglycolyticactivated T cells, respiration was 2-fold more efficient
thanglycolysis (Fig. 2d). Thus, across the above cell types, respiration
is equally or more proteome efficient than glycolysis.

We further assessed the proteome efficiency of ATP generation
through fermentation (converting glucose to ethanol) and respiration
(converting glucose to CO,) by calculating a flux-partitioned proteome
cost’, which counts glycolytic proteins in the cost of respiration (for
providing pyruvate) and discounts flux diverted to biosynthetic pre-
cursors. In both yeast and T cells, this flux-partitioned analysis again
identified respiration asthe more proteome-efficient ATP production
pathway (Extended DataFig. 4a,b). Similarly, evenifincluding all mito-
chondrial proteins as part of respiration’s proteome cost (an extreme
approach that overlooks the many other functions of mitochondria),
the most proteome-efficient energy generation pathway was respira-
tionin/. orientalis, exceeding the efficiency of the best glycolytic path-
way (glycolysisin S. cerevisiae) by 2.3-fold (Extended Data Fig. 4¢,d).

Proteome efficiency in nutrient-limited yeasts

We next sought to evaluate the generality of the greater proteome
efficiency of mitochondrial respiration than glycolysis. As a comple-
mentary context to freely growing batch culture yeast, we explored
nutrient-limited chemostat cultures, generating in-depth flux and
proteomics dataforboth S. cerevisiae and /. orientalis under =12 chemo-
stat conditions. Fluxes aligned closely with growth rate inboth yeasts

(Fig. 3a and Extended Data Fig. 5a), with the exception of increasing
respirationand pentose phosphate pathway fluxes after glucose limita-
tioninS. cerevisiae, which rendersits metabolism similar to /. orientalis
(Extended DataFig. 5b). Under severe nutrient limitation, S. cerevisiae
generated ATP mainly through respiration, switching to aerobic gly-
colysis with faster growth and adequate glucose (Fig. 3b). By contrast,
l. orientalis consistently respired, even with rapid growth. Across nutri-
entlimitation conditions, S. cerevisiae consistently manifested alarge
glycolytic proteome, and /. orientalis consistently manifested a large
respiratory proteome (Fig. 3c). Across both yeasts, proteome efficiency
fell with slower growth, reflecting spare enzyme capacity (Fig.3d,e).In
l.orientalis, ATP production by respiration was always at least fivefold
more proteome efficient than production by glycolysis. In S. cerevisiae,
the proteome efficiency of these pathways shifted strongly as their
use (but not enzyme levels) changed with environmental conditions.
Overall, the best proteome efficiency for glycolysis (S. cerevisiaebatch,
1=0.39 h) was about twofold lower than the best proteome efficiency
of S. cerevisiaerespiration (fast carbon-limited growth, £ =0.28 h) and
fourfold lower than the best proteome efficiency of respiration overall
(I. orientalis batch, u = 0.52 h™). These data support mitochondrial
respiration in yeast being fundamentally more proteome efficient
than glycolysis.

Proteome efficiency in mammals
To explore whether ATP generation by mitochondrial respira-
tion is also more proteome efficient than glycolysis in mammals,
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Fig. 4 | Proteome efficiency of mammalian cells, tissues and tumors.

a-c, ATP flux (a), proteome allocation (b) and proteome efficiency (c) of
glycolysis and respiration in NCI60 cancer cells cultured in vitro using published
flux and proteomics data®*°.d, ATP flux from glycolysis and respirationin

live mice using data from Bartman et al. based on 2-deoxyglucose (2-DG) and
lactate assimilation kinetics®. Tumors are flank-implanted k-Ras-driven PDAC
(flank PDAC) and leukemic spleen. HEX, hexokinase. e-g, ATP flux (e), proteome
allocation (f) and proteome efficiency (g) of glycolysis and respiration in mouse
tissues and tumorsin vivo. ATP flux is shown as mean + s.d. reported in Bartman

etal.”. Proteome allocation is shown as mean +s.e.m. (n = 3 mice (pancreas,
PDAC, spleen and leukemic spleen)) and mean + s.e.m. of independent studies
retrieved from PaxDb*. Proteome efficiency is shown as mean + s.d., with error
propagated from ATP flux and proteome fraction; GEMM, genetically engineered
mouse model. h, Ratio of glycolytic to respiratory flux versus proteome fraction
for I. orientalis, S. cerevisiae, T cells, NCI60 cancer cells and mouse tissues

and tumors. Results from linear regressions across all contexts are shown.

i, Corresponding proteome efficiencies to h. Data points above and to the left of
theline y=xindicate greater respiratory than glycolytic proteome efficiency.

we evaluated three contexts: cultured cancer cells, mouse tissues
and tumorsinvivo. For cancer cells, we took advantage of published
flux and proteomics data across 59 human cancer cell lines grown
in vitro®*® (Fig. 4a,b). Cancer cell lines devoted much more of their
proteome to glycolysis than respiration (median of 3-fold) but still
generated the majority of their ATP via mitochondrial respiration
(median of 1.4-fold of glycolysis), leading to respiration being about
4-fold more proteome efficient (Fig. 4c). Thus, despite cancer cells
being highly glycolytic, respiration is the more proteome-efficient
ATP generation pathway.

For tissuesin vivo, we used recent measurements from our lab
of respiration and glucose usage in fasted mice”. These measure-
ments are based on TCA cycle labeling dynamics and accumulation
rates of 2-deoxyglucose phosphate, respectively, which together
provide a good approximation of ATP production routes (Fig. 4d).
Mouse tissues made >95% of their ATP aerobically (that s, respira-
tory ATP exceeded glycolytic ATP by more than 20-fold; Fig. 4e).
Although they also expressed, on average, a threefold larger res-
piratory proteome than glycolytic proteome (Fig. 4f), respiration

was still roughly one order of magnitude more proteome efficient
than glycolysis (Fig. 4g).

We used similar published data to assess glycolytic and respira-
tory rates in k-Ras-driven pancreatic ductal adenocarcinoma (PDAC)
and spleens infiltrated with Notchl-driven leukemia (leukemic spleen;
Fig. 4d). New quantitative proteomic measurements enabled the
assessment of proteome efficiency (Fig. 4f and Extended Data Fig. 6).
Compared to normal tissues, pancreatic cancer, but not leukemic
spleen, involved a major proteome shift, including an increase in the
glycolytic proteome (Fig. 4e and Extended Data Fig. 6), consistent
with hypoxicsignaling via HIF1a*, which demonstrated anincrease in
proteinlevel of more than one order of magnitude in PDAC (Extended
Data Fig. 6¢). In both PDAC and leukemic spleen, glycolytic flux was
upregulated, whichinleukemiawas apparently mediated by increased
expression of key gating enzymes (GLUT3 and HK3; Extended Data
Fig. 6f).Importantly, despite upregulated glycolysis, both cancer types
still produced >80% of their ATP viarespiration (Fig. 4e). The higher ATP
production by respiration thanby glycolysis resultsin respiration being
much more proteome efficient thanglycolysis also for tumors (Fig. 4g).
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Correlation between energy proteome and flux

Acrossallstudied celland tissue types, the ATP contribution from gly-
colyticrelative torespiratory pathways was predicted by their relative
proteome fraction following a power law of order 1.5 (Fig. 4h). This
implies that changes in glycolytic versus respiratory protein levels
shape energy sources in a supralinear manner. For example, cancer
celllines devoted more of their proteome to glycolysis than to respira-
tion, whereas normal tissues did the opposite (the median glycolysis/
respiration proteome mass was 3 in cancer cells versus 0.3 in mouse
tissues), and the differential in ATP production routes was yet larger

(themedianglycolysis/respiration ATP flux was 0.7 in cancer cells and
0.01in mouse tissues). Apparently, partitioning of the energy pro-
teome directly impacts pathway fluxes and indirectly reflects the cell’s
preference for which of the pathways to more fully engage. Proteome
efficiencies of both respiration and glycolysis were more than one
order of magnitude lower in mammalian tissues thanin cultured cells,
presumably reflecting high reserve capacity in mammalian tissues to
enable rapid responses to organismal stressors (Fig. 4i). Across all the
measured biological contexts, the superiority of respiration was strik-
ing (Fig. 4i; for flux-partitioned analysis that accounts for the glycolytic
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Fig. 6 | Yeast fitness under aerobic and anaerobic conditions. a, Relative
fitness of S. cerevisiae in competitive coculture with /. orientalis under different
carbon sources (ethanol, glucose and sucrose), limited nutrients (C-limited
(carbon/glucose), N-limited (nitrogen/ammonia) or P-limited (phosphorus/
phosphate) chemostats) or cyclic oxygen depletion, with numbers indicating
the fraction of time spent in the anaerobic duty cycle. Data are shown as

mean *s.e.m.; n=3biological replicates (carbon sources) or 4 biological
replicates (chemostats and cyclic oxygen depletion). b,c, Specific growth rates
(b) and glucose consumption rates (c) for batch-cultured S. cerevisiae and /.
orientalis with oxygen, without oxygen or with 10 pM respiratory inhibitor
(antimycin). Dataare shown as mean £ s.e.m.; n=4(+0,), 7 (+O, + antimycin),

7 (S. cerevisiae—0,) and 10 (I. orientalis —0,). d, Corresponding proteome allocation
asinb. Dataareshownasmean + s.e.m.; n =3 (except S. cerevisiae

(S.c.) +antimycin; n=2). e, Energy charge in response to acute addition of 10 upM

antimycinin S. cerevisiae and /. orientalis cultured in glucose minimal medium.
Lines connect the mean (n = 4) at each time point. f, Dependence of growth rate
and ethanol flux on metabolic proteome allocation. Values were calculated from
acoarse-grained model of metabolism and growth rate parameterized using the
experimentally measured proteome efficiencies of glycolysis and respiration
with total metabolic proteome mass optimized to maximize growth rate undera
fixed mass ratio between glycolytic and respiratory proteomes (Supplementary
Note). g, Growth rates of 16 yeasts cultured in YPD and glucose with or without
shaking (aerated and settled, respectively). Clear bars are aerated growth rates
fromFig. 5b. Color bars are settled growth rates. Data are shown as mean +s.e.m.;
n=4or8.h,Growth rate ratio between settled and aerated growth regressed

to aerobic glucose consumption rate in the 16 yeasts described in f; linear
correlation coefficientR?= 0.63 and P= 0.00014.

proteome required for pyruvate production to feed respiration,
see Extended Data Fig. 6g).

ATP generation routes and yeast growth rates

Thesuperior proteome efficiency of respiration should translate into a
growth advantage for respiratory over aerobic glycolytic yeast. Quan-
titatively, each percent of the proteome that is saved through greater
efficiency produces faster growth. Based on the maximum observed
proteome efficiencies of respiration (e, batch /. orientalis) and glyco-
lysis (e;, batch S. cerevisiae) 0f 1,930 and 466 mmol ATP per hper gram
of protein (gProtein; Fig. 2d), respectively, we calculated that every
unitincrease in ATP flux made by glycolysis (in mmol ATP per h per

gramdry weight (gDW)) comes with a proteome cost ofel - el: 0.16%
G R
gProtein per gDW. Decreasing glycolytic flux from 27 mmol per h per

gDWin . cerevisiaeto10 mmol per h per gDWin /. orientalis, adifference
of 34 mmol ATP per hper gDW (as glycolysis makes 2 ATP) corresponds

to a protein mass savings of about 5% (or 10% of the proteome, as half
of dry weight is protein). Based on this proteome savings and literature
datasuggesting an-0.02 h™ gain per 1% proteome savings’, we expect
agrowth advantage of about ~-0.2 h™, in line with the experimental
growth advantage of I. orientalis of 0.23 h™.

A growth difference between any particular pair of yeasts could,
however, arise for reasons unrelated to the proteome efficiency of
ATP generation. As an orthogonal assessment of whether respira-
tion favors faster yeast growth, we surveyed 23 yeast strains spanning
about400 million years of evolution® (Fig. 5a). These include, in addi-
tion to S. cerevisiae and l.orientalis, two other industrially relevant
species Scheffersomyces stipites and Kluyveromyces marxianus® and
19 species randomly picked from more than 300 species across the
budding yeast phylum. Comparing glucose uptake rates and growth
across these yeasts (Fig. 5b in rich medium and Extended Data Fig. 7a
in minimal medium), faster glucose consumption did not robustly
predict faster growth (Fig. 5c). Instead, growth rate correlated with
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glucose consumption rate until the glucose consumptionrate reached
about1g per liter per h per optical density (OD; about 10 mmol per h
per gDW), above which aerobic glycolysis set in (Extended DataFig. 7b),
and the aerobic glycolytic yeasts grew slower than the respiratory
yeasts. The fastest growing of the aerobic glycolytic yeasts was actually
S. cerevisiae, but it still grew more slowly than a cadre of respiratory
yeasts (Fig. 5c and Extended Data Fig. 7a). These data are consistent
with respiration, through its greater proteome efficiency, enabling
faster yeast growth.

Other explanations for aerobic glycolysis

The proteome efficiency of respiration calls for an alternative explana-
tion for the evolutionary persistence of aerobic glycolysis. We exam-
ined three proposed explanations for aerobic glycolysis: provision
of biosynthetic precursors, need for NAD" regeneration from NADH,
and a limitation in energy dissipation rate*>*. In both /. orientalis and
S. cerevisiae, biosynthetic fluxes consuming glycolytic intermediates
account for aminority of glucose carbon (31% in /. orientalis and 9% in
S. cerevisiae; Extended Data Fig. 1g), arguing against faster glycolysis
being needed to supportbiosynthesis. Moreover, the respiratory yeast
I. orientalis has higher, not lower, biosynthetic fluxes.

Several biosynthetic steps (such as de novo serine synthesis) use
NAD"asthe electronacceptor, generating NADH. This NADH must be
oxidized to NAD* for biosynthesis to continue. Metabolomics revealed
that /. orientalis has higher NAD* and lower NADH concentrations
than S. cerevisiae, consistent with respiration being more, not less,
effective at regenerating NAD" (Extended Data Fig. 8a). Thus, neither
biosyntheticdemand nor NAD" regeneration are likely drivers of aero-
bic glycolysis.

Another possibility is that aerobic glycolysis is beneficial because
cells have limitations on the maximum rate of free energy dissipa-
tion*. Although respiration is more efficient in generating ATP from
glucose, in so doing, it also liberates more free energy, which may be
problematic for reasons including overheating. We thus compared
glycolysis and respiration for energy dissipation per ATP produced and
also examined the total cellular free energy dissipation rate (product
of A,Gandflux)inS. cerevisiae and /. orientalis (Extended Data Fig. 8b).
Our analysis concurs with the prior literature regarding glycolysis
being less energy dissipating than respiration for S. cerevisiae*'. Nota-
bly, respiratory energy dissipation depends on the coupling of ATP
synthesis to electron transport (represented by the ATP-to-oxygen
ratio, that is, the P/O ratio). The lack of a proton-pumping complex |
in S. cerevisiae results in less coupling and thus high dissipation from
respiration. However, most respiratory yeasts, including /. orientalis,
have a proton-pumping complex I. This fundamentally changes the
energetics of respiratory ATP productionsuch that free energy released
per ATP produced from respiration s less than or similar to that from
glycolysis. The resultis that energy dissipated during ATP synthesis is
indistinguishable within error for S. cerevisiae and /. orientalis, arguing
against aerobic glycolytic yeast evolving to cope with energy dissipa-
tion limits (Extended Data Fig. 8b).Inaddition, when ATPis used for bio-
synthesis, amajority of energy contained initis eventually dissipated;
therefore, the gross energy dissipation (including ATP hydrolysis) is
higherin /. orientalis due toits faster overall ATP turnover, suggesting
that . cerevisiaeis unlikely to be pushing up against some fundamental
biological barrier of maximum dissipation.

Yeast competitive fitness

Several other explanations predict superior competitive fitness for
aerobicglycolytic yeast. For example, aerobic glycolysis has been sug-
gested to enable yeast to win the battle for limited glucose®**** or to
poison competitors with ethanol***, To explore such possibilities, we
performed competitive growth experiments between /. orientalis and
S. cerevisiae (Fig. 6a). Under aerobic conditions, the more respiratory
I. orientalis outcompeted the more glycolytic S. cerevisiae in ethanol,

limited glucose, and surplus of glucose (batch culture and ammonia-
and phosphate-limited chemostats). The same trend was observed
in batch cultures fed sucrose, which can be directly metabolized by
S. cerevisiae but not /. orientalis, which apparently wins by leaching
off glucose and fructose liberated by its competitor. Thus, under aero-
bic conditions, including conditions where S. cerevisiae elects to engage
in aerobic glycolysis, respiration favors competitive fitness.

Hypoxia

A crucial metabolic factor is oxygen availability. Due to oxygen'’s lim-
ited solubility and diffusion through water, yeasts experience oxygen
limitation environmentally (Extended Data Fig. 9a). S. cerevisiae also
experienced oxygen limitation repeatedly over centuries of beverage
making*®. We examined theimpact of oxygen deprivation on S. cerevi-
siaeand /. orientalisfitness. Ineither fully or cyclically oxygen-depleted
cocultures, S. cerevisiae outcompeted /. orientalis (Fig. 6a). I. orientalis
withanengineered mild respiratory defect (ANde) was outcompeted by
engineered fermentation-defective /. orientalis (APdc) under aerobic
conditions, but theresults flipped under oxygen depletion (Extended
DataFig.9b). Glucose-fed S. cerevisiae grew at asimilar rateirrespective
ofthe presence of oxygen or the electron transport chain inhibitor anti-
mycin (Fig. 6b) with minimal impact of oxygen availability on glucose
consumption rate or proteome allocation (Fig. 6¢,d). By contrast, /.
orientalis grew about 60% slower when oxygen was removed or antimy-
cinwasadded (Fig. 6b). Even this relatively sluggish anaerobic growth
required substantial metabolic and proteome remodeling, doubling of
glycolytic flux and tripling of glycolytic proteome fraction (Fig. 6¢,d).
Moreover, acute respiratory inhibition in /. orientalisbut not S. cerevi-
siaecaused severe energy stress (Fig. 6e). Thus, S. cerevisiae’s glycolytic
proteome and associated aerobic glycolysis s inefficient during aero-
bic growth but enhances fitness following decreased oxygen supply.

Balancing efficiency and robustness

Both /. orientalisand . cerevisiae cantailor their respiratory versus glyc-
olyticenzyme expressionto environmental conditions. Glucose-limited
S. cerevisiae modestly shrank its glycolytic proteome (Fig. 3c).
Oxygen-deficient /. orientalis expanded its glycolytic machinery at the
expense of translation machinery (Fig. 6d). This tailoring, however, is
incomplete. /. orientalis partially retained respiratory proteins during
hypoxia, whereas S. cerevisiae retained high glycolytic enzymes under
aerobic conditions (Figs. 3cand 6d).

To explore the consequences of incomplete proteome tailoring,
weassembled a coarse-grained quantitative model of yeast growth and
metabolism, where growth is limited both by translational machinery
and ATP generation machinery (fermentative or respiratory). The model
was parameterized using experimentally measured proteome efficien-
ciesof translation and ATP generation by fermentation and respiration
as well as the flux split ratio for biosynthesis (Extended Data Fig. 9c
and Supplementary Note). In this modeling approach, more efficient
ATP production results in more room for translation machinery and
thus faster growth. Using this approach, we identified the respiratory
and glycolytic proteome allocation that optimizes growth rate under
fully aerobic or anaerobic conditions. This analysis revealed that the
proteomes ofboth /. orientalis andS. cerevisiae lie between the optimal
aerobic and anaerobic proteome (Extended Data Fig. 9d), suggesting
anevolutionary drive toward flexibility or robustness.

Outputs of the model include predicted glucose uptake, oxygen
uptake and ethanol secretion rates. The model was set up to find, for a
fixed glycolytic proteome mass (Extended DataFig. 9e) or ratio of glyco-
lytictorespiratory enzyme expression (Fig. 6f), the metabolic fluxes (gly-
colyticandrespiratory) and proteome partitioning between metabolism
and translation that optimize growth. This analysis predicts that yeast
optimized for anaerobic conditions will, even when given oxygen, secrete
ethanol because it is efficient for them to use their existing glycolytic
capacity tomake more ATPasgrowthaccelerates (Extended DataFig. 9e).
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More generally, the model predicts two alternative modes of glucose-fed
aerobic metabolism depending onthe ratio of glycolytic-to-respiratory
proteome: (1) complete respiration when glycolytic capacity (production
of NADH and pyruvate from glucose beyond the pyruvate needed for
anabolism) isless than or equal to respiratory capacity (to oxidize those
glycolytic products) and (2) aerobic glycolysis when glycolytic capacity
exceeds respiratory capacity (Fig. 6f). Given the superior proteome
efficiency of respiration, metabolic optimality involves perfect balancing
of glycolytic and respiratory capacity, that is, expressing the minimum
glycolyticmachinery to provide required anabolic substrates and respira-
tory fuel. Whenglucose is the only carbon source, excessive respiratory
capacity relative to glycolytic capacity is perilous. Respirationfailsto run
maximally due to lack of fuel. By contrast, whenever glycolytic capacity
exceeds respiratory capacity, both pathways can be used fully, with the
outcome being aerobic glycolysis.

Aerobic glycolysis and microaerobic fitness

Neither /. orientalisnor S. cerevisiae evolved for strict anaerobicity. Yet,
microaerobic conditions often occur, includingin ‘settled’ liquid culture
(thatis, cultures without sufficient mechanical agitation; Extended Data
Fig. 9a). We examined the growth of divergent yeasts in such settled
cultures. The top 16 fast-growing yeasts, with aerobic growth rates of
between 0.3 h™and 0.6 h™, all showed slower growth rates in settled
culture (Fig. 6g). But growth suppression was less for aerobic glycolytic
yeasts. Similarly, the adapted ANdel. orientalis grew slower than wild-type
I. orientalisin aerated culture but not in settled culture (Extended Data
Fig. 9f). Hypoxic fitness, defined as the ratio of growth rate in settled
culturetothatinaerated culture, correlated with basal aerobic glycolytic
flux (R*=0.63 and P=0.0001; Fig. 6h). Therefore, a benefit of aerobic
glycolysis appears to be readiness for oxygen limitation.

Discussion

We generated fluxomics and quantitative proteomics datafrom yeasts
(intotal 30 physiological conditions) and naive and activated primary
mouse T cellsand new proteomics data for paired healthy and tumorous
mousetissues. Based on these dataand literature data, we determined
the proteome efficiency of both glycolysis and respiration across two
yeast strains, T cells, 59 cancer cell lines, 10 normal mouse tissues,
mouse PDAC and mouse leukemic spleen. Only batch-grown S. cerevi-
siae (consistent with prior research?), activated T cells and a few cancer
cell lines manifested similar proteome efficiencies for glycolysis and
respiration (within twofold). In every other instance, respiration was
substantially more proteome efficient (Fig. 4i).

Earlier theoretical analyses point to ‘rate-yield tradeoff” intrinsic
to enzyme catalysis. Specifically, a low energy yield pathway would
consume more thermodynamic driving force and thus decrease the
amount of enzyme wasted in the reverse flux®**5, The theory nicely
predictsthe divergent choicein bacteria of high-yield versus low-yield
glycolytic pathways, both leading to lactate production. However,
choice between glycolysis and respiration may not be subject to such
atradeoff. Thelow ATPyield of glycolysis does not necessarily imply a
greater thermodynamic driving force. Compared to respiration that
makes low-energy CO, (glucose to CO,, AG’ =-2,800 k] mol " glucose,
where AG’ refers to AG with all metabolites at common physiological
concentrations), glycolysis preserves a lot of glucose energy in ethanol
(glucose to ethanol, AG’ = -250 k] mol* glucose; Extended Data Fig. 8b).
Thus, respiration can be more thermodynamically driven, whereas
glycolysis is sometimes close to equilibrium™.

The chemistry used by respiratory and glycolytic enzymes also
differs substantially. Glycolysis involves soluble enzymes colliding
with substrates to make and break carbon-carbon and carbon-oxygen
bonds, with some reactions such as enolase and pyruvate decarboxy-
lase intrinsically chemically challenging. It occurs in the cytosol and
may be subject to constraints on substrate concentrations that limit
reaction kinetics*®. By contrast, the reactions of respiration occur

primarily in the mitochondrial matrix and on the mitochondrial inner
membrane, whose two-dimensional structure confines and colocal-
izes the large macromolecular complexes of the electron transport
chain. Moreover, from a fundamental chemical reaction perspective,
the electron transport chain mainly transfers protons and electrons,
which involves much lower energy barriers (that is, is intrinsically
faster) thantypical covalent chemical reactions, like those of glycolysis,
whose transition states involve substantial distortions of heavy atom
geometries®. These basic differences in both reactionlocalization and
type favor the proteome efficiency of respiration.

Despite its low energy efficiency and low proteome efficiency,
glycolysis becomes crucial when respiratory energy production is
hampered. Inthat case, some cells increase their glycolytic proteome,
mediated by mechanisms such as hypoxia or energy sensing (for exam-
ple,inpancreas cancer (Fig. 4f) and /. orientalis (Fig. 6d), respectively).
Many other proliferative cell types express copious glycolytic proteins
regardless of oxygen availability and default to glycolytic energy pro-
duction (for example, S. cerevisiae and cancer cells; Fig. 4h). In normal
mammalian tissues that primarily use respiratory energy, thereis also
substantial glycolytic enzyme expression, likely to meet acute energy
demands, be ready for hypoxia and contribute to systemic blood glu-
cose homeostasis. Such constitutive expression of glycolytic machin-
ery aligns with a general propensity for cells of a given type to have a
characteristic metabolic proteome that varies only modestly across
conditions (Figs. 2b and 3c). A benefit of such proteome constancy is
that cells are prepared in advance for changing metabolic environments,
with high glycolytic enzyme expression leading to preparedness for
hypoxia (Fig. 6). Our quantitative modeling supports high glycolytic
enzyme expression per se being sufficient to render aerobic glycolysis
the preferred metabolic fluxmode (Fig. 6f and Extended Data Fig. 9c-e).
Thus, expression of alarge glycolytic proteome that ensures adequate
substrate to feed respiration and prepares cells for hypoxia underlies
the seemingly paradoxical phenomenon of aerobic glycolysis.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41589-024-01571-y.

References

1. Crabtree, H. G. Observations on the carbohydrate metabolism
of tumours. Biochem. J. 28, 536-545 (1929).

2. De Deken, R. H. The Crabtree effect: a regulatory system in yeast.
J. Gen. Microbiol. 44, 149-156 (1966).

3. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B.
Understanding the Warburg effect: the metabolic requirements of
cell proliferation. Science 324, 1029-1033 (2009).

4. DeBerardinis, R. J. & Chandel, N. S. We need to talk about the
Warburg effect. Nat. Metab. 2, 127-129 (2020).

5.  Wolfe, A. J. The acetate switch. Microbiol. Mol. Biol. Rev. 69,
12-50 (2005).

6. Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and
competition in the evolution of ATP-producing pathways. Science
292, 504-507 (2001).

7. Basan, M. et al. Overflow metabolism in Escherichia coli results
from efficient proteome allocation. Nature 528, 99-104 (2015).

8. Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in
growth strategies reflect tradeoffs in cellular economics. Mol.
Syst. Biol. 5, 323 (2009).

9. Adadi, R., Volkmer, B., Milo, R., Heinemann, M. & Shlomi, T.
Prediction of microbial growth rate versus biomass yield by
a metabolic network with kinetic parameters. PLoS Comput. Biol.
8, 1002575 (2012).

Nature Chemical Biology


http://www.nature.com/naturechemicalbiology
https://doi.org/10.1038/s41589-024-01571-y

Article

https://doi.org/10.1038/s41589-024-01571-y

10.

n.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

O’'Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D.R. &

Palsson, B. @. Genome-scale models of metabolism and gene
expression extend and refine growth phenotype prediction.

Mol. Syst. Biol. 9, 693 (2013).

Mori, M., Hwa, T., Martin, O. C., De Martino, A. & Marinari, E.
Constrained allocation flux balance analysis. PLoS Comput. Biol.
12, €1004913 (2016).

Salvy, P. & Hatzimanikatis, V. The ETFL formulation allows
multi-omics integration in thermodynamics-compliant
metabolism and expression models. Nat. Commun. 11, 30 (2020).
Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W.
Metabolic enzyme cost explains variable trade-offs between microbial
growth rate and yield. PLoS Comput. Biol. 14, 1006010 (2018).
Sanchez, B. J. et al. Improving the phenotype predictions of a
yeast genome-scale metabolic model by incorporating enzymatic
constraints. Mol. Syst. Biol. 13, 935 (2017).

Oftadeh, O. et al. A genome-scale metabolic model of
Saccharomyces cerevisiae that integrates expression constraints
and reaction thermodynamics. Nat. Commun. 12, 4790 (2021).
Elsemman, I. E. et al. Whole-cell modeling in yeast predicts
compartment-specific proteome constraints that drive metabolic
strategies. Nat. Commun. 13, 801(2022).

Chen, Y. & Nielsen, J. Energy metabolism controls phenotypes by
protein efficiency and allocation. Proc. Natl Acad. Sci. USA 116,
17592-17597 (2019).

Szenk, M., Dill, K. A. & de Graff, A. M. R. Why do fast-growing
bacteria enter overflow metabolism? Testing the membrane real
estate hypothesis. Cell Syst. 5, 95-104 (2017).

Beg, Q. K. et al. Intracellular crowding defines the mode and
sequence of substrate uptake by Escherichia coli and constrains its
metabolic activity. Proc. Natl Acad. Sci. USA 104, 12663-12668 (2007).
Radecka, D. et al. Looking beyond Saccharomyces: the potential
of non-conventional yeast species for desirable traits in
bioethanol fermentation. FEMS Yeast Res. 15, fov053 (2015).
Fatma, Z., Schultz, J. C. & Zhao, H. Recent advances in
domesticating non-model microorganisms. Biotechnol. Prog. 36,
3008 (2020).

Xiao, H., Shao, Z., Jiang, Y., Dole, S. & Zhao, H. Exploiting
Issatchenkia orientalis SD108 for succinic acid production. Microb.
Cell Fact. 13,121 (2014).

Suthers, P. F. et al. Genome-scale metabolic reconstruction of the
non-model yeast Issatchenkia orientalis SD108 and its application to
organic acids production. Metab. Eng. Commun. 11, e00148 (2020).
Cao, M. et al. A genetic toolbox for metabolic engineering of
Issatchenkia orientalis. Metab. Eng. 59, 87-97 (2020).

Douglass, A. P. et al. Population genomics shows no distinction
between pathogenic Candida krusei and environmental Pichia
kudriavzevii: one species, four names. PLoS Pathog. 14, e1007138
(2018).

Shen, X.-X. et al. Tempo and mode of genome evolution in the
budding yeast subphylum. Cell 175, 1533-1545 (2018).
Gopalakrishnan, S. & Maranas, C. D. ®*C metabolic flux analysis at
a genome-scale. Metab. Eng. 32, 12-22 (2015).

King, Z. A. et al. Escher: a web application for building, sharing,
and embedding data-rich visualizations of biological pathways.
PLoS Comput. Biol. 11, 1004321 (2015).

Luttik, M. A. H. et al. The Saccharomyces cerevisiae NDE1

and NDE2 genes encode separate mitochondrial NADH
dehydrogenases catalyzing the oxidation of cytosolic NADH. J.
Biol. Chem. 273, 24529-24534 (1998).

Kaymalk, I. et al. Carbon source availability drives nutrient
utilization in CD8* T cells. Cell Metab. 34, 1298-1311 (2022).

Li, W. et al. Cellular redox homeostasis maintained by malic
enzyme 2 is essential for MYC-driven T cell lymphomagenesis.
Proc. Natl Acad. Sci. USA 120, e2217869120 (2023).

32.

33.

34.

35.

36.

37.

38.

39.

40.

a1.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags
enables simultaneous proteome-wide measurements across

16 samples. Nat. Methods 17, 399-404 (2020).

Wolf, T. et al. Dynamics in protein translation sustaining T cell
preparedness. Nat. Immunol. 21, 927-937 (2020).

Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation
and requires CD28-mediated AKT-dependent and independent
pathways. J. Immunol. 180, 4476-4486 (2008).

Zielinski, D. C. et al. Systems biology analysis of drivers underlying
hallmarks of cancer cell metabolism. Sci. Rep. 7, 41241 (2017).
Gholami, A. M. et al. Global proteome analysis of the NCI-60 cell
line panel. Cell Rep. 4, 609-620 (2013).

Bartman, C. R. et al. Slow TCA flux and ATP production in primary
solid tumours but not metastases. Nature 614, 349-357 (2023).
Kierans, S. J. & Taylor, C. T. Regulation of glycolysis by the
hypoxia-inducible factor (HIF): implications for cellular
physiology. J. Physiol. 599, 23-37 (2021).

Malina, C., Yu, R., Bjorkeroth, J., Kerkhoven, E. J. & Nielsen, J. Adaptations
in metabolism and protein translation give rise to the Crabtree effect in
yeast. Proc. Natl Acad. Sci. USA 118, €2112836118 (2021).

Luengo, A. et al. Increased demand for NAD" relative to ATP drives
aerobic glycolysis. Mol. Cell 81, 691-707 (2021).

Niebel, B., Leupold, S. & Heinemann, M. An upper limit on Gibbs
energy dissipation governs cellular metabolism. Nat. Metab. 1,
125-132 (2019).

Bachmann, H. et al. Availability of public goods shapes the
evolution of competing metabolic strategies. Proc. Natl Acad. Sci.
USA 110, 14302-14307 (2013).

MacLean, R. C. & Gudelj, I. Resource competition and social conflict
in experimental populations of yeast. Nature 441, 498-501 (2006).
Zhou, N. et al. Coevolution with bacteria drives the evolution

of aerobic fermentation in Lachancea kluyveri. PLoS ONE 12,
e0173318 (2017).

Dashko, S., Zhou, N., Compagno, C. & Piskur, J. Why, when, and
how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 14,
826-832 (2014).

Dekker, W. J. C., Wiersma, S. J., Bouwknegt, J., Mooiman, C. &
Pronk, J. T. Anaerobic growth of Saccharomyces cerevisiae CEN.
PK113-7D does not depend on synthesis or supplementation of
unsaturated fatty acids. FEMS Yeast Res. 19, foz060 (2019).
Flamholz, A., Noor, E., Bar-Even, A., Liebermeister, W. & Milo, R.
Glycolytic strategy as a tradeoff between energy yield and protein
cost. Proc. Natl Acad. Sci. USA 110, 10039-10044 (2013).

Noor, E. et al. Pathway thermodynamics highlights kinetic obstacles
in central metabolism. PLoS Comput. Biol. 10, 1003483 (2014).
Park, J. O. et al. Near-equilibrium glycolysis supports metabolic
homeostasis and energy yield. Nat. Chem. Biol. 15, 1001-1008 (2019).
Marcus, R. A. Transfer reactions in chemistry. Theory and
experiment. Pure Appl. Chem. 69, 13-30 (1997).

Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D. &
Mering, C. Version 4.0 of PaxDb: protein abundance data,
integrated across model organisms, tissues, and cell-lines.
Proteomics 15, 3163-3168 (2015).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America,
Inc. 2024

Nature Chemical Biology


http://www.nature.com/naturechemicalbiology

Article

https://doi.org/10.1038/s41589-024-01571-y

Methods

Yeast strains and cultivation

Strains. The /. orientalis strainused in this study, SD108, was originally
isolated from rotting bagasse?. Two prototrophicS. cerevisiae strains
were used: CEN.PK2 (MATa) was a gift from J. Avalos (Department of
Chemical and Biological Engineering, Princeton University), and FY4
(DBY11069, MATa) was derived from the S288C background®?. The
$288C strain naturally carries mutations that affect the gene Hap1
involved in respiratory regulation®. . orientalis ANde (Ag1781) and
complexImutant (Ag1702) was created with CRISPR-Cas9 editing®***,
asdescribed in Suthersetal. .

1. orientalis APdc was generated in this study by deleting the only
pyruvate decarboxylase gene (Pdc) using a previously developed
CRISPR-Cas9 tool**. To target Pdc deletion, a single guide RNA (sgRNA)
with the sequence 5-AATGCCGGCTACGAAGCTGA-3’ was designed,
which contains a TGG sequence as a protospacer-adjacent motifatits
3’end. Specificity of the sgRNA was verified by BLAST analysis against
the whole genome sequence available on JGI MycoCosm® (https://
mycocosm.jgi.doe.gov/Issorie2/Issorie2.home.html). A 200-base
pair (bp) donor DNA, with sequence homology to regions upstream
(100 bp) and downstream (100 bp) of the targeted site, introduces
a14-bp deletion within the Pdc gene’s coding region, leading to a
frameshift mutation that was verified by PCR and Sanger sequencing.
Both the sgRNA and donor DNA were synthesized by Integrated DNA
Technologies and subsequently assembled into a CRISPR-Cas9 tool
plasmid using NEBuilder HiFi DNA Assembly (New England Biolabs).
The donor DNA sequence was TTGGTGTTCCTGGTGATTTCAATTTG-
GCATTGTTGGACCACGTTAAGGAAGTTGAAGGCATTAGATGGGTCGG-
TAACGCTAACGAGTTGAATGCCGGCTAATGCAAGAATCAATGGATTTG-
CATCCCTAATCACCACCTTTGGTGTCGGTGAATTGTCTGCCGTCAATGC-
CATTGCAGGTTCTTATGCTGAACACGTCCC, and the primer sequences
for verificationwere 5-TGTCGTTATCCTTTTGGCATTGACG-3’ (sense)
and 5-TCTGCCTTCTTGACCATTTCAACAAC-3’ (antisense).

Other budding yeast strains were obtained from the ARS culture
collection (NRRL) and were maintained as instructed. The NRRL acces-
sion number is shown in Supplementary Table 19.

Media. If not specified, yeasts were cultured in minimal medium con-
taining 20 g 1" glucose and 6.7 g I YNB without amino acids (pH 5;
Sigma, Y0626). For nutrient limitation, YNB without amino acids,
ammonium or phosphate (MP Biomedicals, 114029622) was used as
the mineral base and was supplemented with nutrients specified in
Supplementary Table 1 (adapted from Boer et al.*®). For cultivationin
richmedium, YPD was made with10 g I yeast extract, 20 g 1! peptone
and 20 g I glucose. All media were filter sterilized through a 0.22-pum
porefilter.

Culture. Cell density was quantified by measuring the OD at 600 nm
(ODg0) using a UV-Vis spectrophotometer (GENESYS 10, Thermo)
after tenfold dilution. For batch culture, the yeast strains were first
cultured overnightin minimal mediumto achieve afinal OD,,, of about
4 for I. orientalis and 3 for S. cerevisiae. For *C isotope tracing, the
yeast strains were adapted in the same *C culture overnight to ensure
isotopic steady state in the biomass. The overnight culture was then
inoculated into 4 mlof mediumin 14-mlround-bottom Falcon culture
tubestilted ata45° angle orinto 20-40 ml of mediumin 150-mlvented
baffled culture flasks at aninitial 0D, of about 0.05-0.2 and cultured
in a shaker at 250 rpm and 30 °C. Pseudo-steady state was usually
maintained below an OD,, of 1.5.

For nutrient-limited continuous culture, S. cerevisiaeFY4 or I. ori-
entalis SD108 was cultured inahome-built miniaturized multichannel
bioreactor with a working volume of 20 ml following the previously
published procedure”. Overnight culture (200 pl) was inoculated in
the culture tube and allowed to grow overnight before starting the con-
tinuous flow of medium. The flow rate was controlled by amultichannel

peristaltic pump (205S/CA12, Watson-Marlow) and manifold tubing
with proper internal diameter. The flow rate was calibrated each time
by monitoring the effluent, and the volume of the culture was adjusted
within+2 mlto match the desired dilutionrate. The cultures were mixed
by sparging with 7.5 standard liters per min of water-saturated air for
aerobic culture. The culture was maintained under continuous flow
for at least 48 hto achieve steady state. The final pH was measured to
be about 3.5. Four dilution rates (0.08, 0.16, 0.22 and 0.28 h™!) were
used for S. cerevisiae, and five dilution rates (0.12, 0.18, 0.23, 0.34 and
0.45h™) were used for I. orientalis for each nutrient limitation.

Oxygen-depleted batch culture was performed in the same
home-built bioreactor with continuous sparging of 7.5 standard lit-
ers per min of water-saturated nitrogen. For antimycin treatment, a
concentrated stock of antimycin (100 mM in DMSO) was first diluted
100x with water and added to the culture at a100x dilution.

Settled culture was performed in 96-well deep assay plates with a
1-ml culture volume. The cultures were leftin anincubator at 30 °C and
mixed every 3 hfor growth monitoring. Dissolved oxygen was assayed
with anoxygen-sensing plate. Specifically, exponential-phase yeast cul-
ture was added to 100 pl of freshmediumina 96-well plate coated with
a phosphorescence oxygen sensor at the bottom (OxoPlate, OP96U,
PreSens Precision Sensing). The culture was allowed to acclimate for
10 min and was analyzed by a plate reader with or without fast shaking
at 30 °C (BioTek, Synergy HT). Calibration and measurement were
performed following the manufacturer’s procedure.

Mice

All mouse experiments were approved by the Institutional Animal
Care and Use Committee at Princeton University (protocol number
3111). C57BL/6 mice (Charles River Laboratories) were used for CD8"
T cell isolation. Female mice aged between 8 and 12 weeks were used
unless otherwise noted. Mice were housed under anormal light cycle
(0700 to 1900 h) at room temperature (20-26 °C) and a humidity of
40-60%, with water and food (PicoLab Rodent Diet 5053, LabDiet)
provided ad libitum.

Healthy and tumoroustissues were obtained frommice described
in an earlier study”, including spontaneous PDAC (genetically engi-
neered mouse model PDAC, PdxI-cre; LSL-Kras®™"; Trp53"™) mice, syn-
geneic PDAC allograft tumors (flank PDAC; established by implanting
tumors from PdxlI-cre; LSL-Kras®*™*; LSL-TrpS3%7*"* mice subcutane-
ously into the mouse flank) and primary T cell acute lymphocytic leu-
kemia (leukemic spleen; NOTCHI1-induced primary cells transplanted
into sublethally irradiated recipients).

Mouse CDS8" T cells

Isolation, culture and stimulation of mouse naive CD8" T cells. Pro-
cedures were adapted from an earlier study*®. Briefly, mouse spleens
were collected and pooled as single-cell suspensions by manual disrup-
tion and passage through 70-pm cell strainers into RPMI-1640 medium.
After red blood cell lysis (eBioscience, 00-4300-54) and another pas-
sage through 70-pum cell strainers into PBS supplemented with 0.5%
bovineserumalbuminand 2 mMEDTA, naive CD8"T cells were purified
by magnetic bead separation using a naive CD8a" T cell isolation kit
(mouse; Miltenyi Biotec,130-096-543) following the vendor’sinstruc-
tions. Approximately 2 x 10° - 3 x 10° purified naive CD8" T cells were
obtained from each mouse. Cell number was counted using Trypan
blue staining and the Countess system (Invitrogen).

Cells were cultured in complete RPMI medium made with RPMI-
1640 (11875119, Thermo Fisher) supplemented with 10% fetal bovine
serum, 100 U ml™ penicillin, 100 pg ml™ streptomycin and 55 pM
2-mercaptoethanol. Cells were maintained at1 x 10° cells per mlin1ml
of mediumin12-well plates, unless specified. Naive T cells were either
rested incomplete RPMImedium supplemented with recombinant IL-7
(50 Uml™; Peprotech, 217-17) or stimulated for 24 h with plate-bound
anti-CD3 (10 pg mi™; Bio X Cell, BEO0OO1-1) and anti-CD28 (5 pg ml™;
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Bio X Cell, BEOO15-1) in complete RPMI medium supplemented with
recombinant IL-2 (100 U ml™; Peprotech, 217-12). All experiments on
activated T cells were performed 24 h after stimulation unless other-
wise noted. Within this time window, cell size expanded, but no obvious
increase in cell number was observed.

Flow cytometry. Purity of naive CD8" T cells (98%) and expression of
activation markers were verified by flow cytometry. Specifically, cells
were collected, washed with staining buffer (PBS + 2% fetal bovine
serum) and stained with the viability dye Live/Dead Aqua (Thermo
Fisher, L34966) according to the manufacturer’s instructions. Cells
were then washed with staining buffer and stained for the following
surface markers onice for 30 min: CD4 (APC-Cy7,1:100, clone RM4-5,
BD Biosciences, 565650), CD8a (PerCP-Cy5.5, 1:100, clone 53-6.7, BD
Biosciences, 551162), CD25 (APC, 1:100, clone PC61, BD Biosciences,
557192), CD44 (PE-Cy7, 1:100, clone IM7, BD Biosciences, 560569),
CD62L (PE, 1:100, clone MEL-14, BD Biosciences, 561918) and CD69
(FITC, 1:250, clone H1.2F3, BD Biosciences, 557392). All flow cytometry
datawereanalyzed withan LSR1I flow cytometer (BD Biosciences) and
FCS Express 7.12 (De Novo Software). The following gating strategy was
used: FSS/SSC lymphocyte gate (95%), singlet gate (98%), Live/Dead
(98%), CD8" (using CD4 versus CD8, 99%), naive (CD62L versus CD44,
99%) and activated (CD69 versus CD25,90%).

BCisotope tracing and metabolite extraction

For yeasts, two glucose tracers were used for flux analysis: [U-*C,]
glucose and [1,2-2C,]glucose. Each tracer was mixed with unlabeled
glucose to achieve a 1:1 molar ratio (50% enrichment). Batch cultures
were adaptedinthe tracer mediumovernightbefore allowing to grow
infresh medium for more than three generations. Continuous cultures
were cultured in tracer medium for the whole experimental period.
BC mass isotopomer distribution in about 40 metabolites was then
analyzed by liquid chromatography-mass spectrometry (LC-MS)
from extracted polar metabolites and biomass hydrolysates (see Dry
weight and biomass composition).

IsotopetracinginT cellswas performed with threeisotopetracers,
[U-BC¢lglucose, [1,2-*C,]glucose and [U-*C,]glutamine, in RPMI-1640
medium (USBio R9011, with correct supplementation; pH 7.4) and 10%
dialyzed fetalbovine serum (Thermo Fisher, 26400044) and 1% penicil-
lin and streptomycin. Twenty-four hours after isolation, T cells were
pelleted, washed and resuspended in tracing medium and cultured
for 5 hbefore metabolite extraction.

Yeast metabolites were extracted by chilled solvent following rapid
vacuumfiltration. Specifically, atotalamount of cell culture equivalent
to3 mlatan OD,,,0of 0.8 was extracted. Batch cultures were extracted at
an 0D, between 0.6 and 1.0. Yeast cultures were vacuum filtered using
Nylon membrane filters (0.5-um pore size, 1213776, GVS Magna) on a
fritted glass support of a vacuum filter flask. The membrane with the
yeast pellet was then quickly immersed in 1.5 ml of metabolite extrac-
tion solvent (40:40:20 acetonitrile:methanol:water with 0.5% formic
acid precooled to —20 °C) in a Petri dish. After an incubation of about
1minonice, the extract was neutralized with 132 pl of 15.8% (wt/vol)
NH,HCO;. The extract was stored at -80 °C before LC-MS analysis. The
extract was then centrifuged at 21,300g at 4 °C to obtain supernatant
ready for LC-MS analysis for polar metabolites.

T cellmetabolites were extracted adapting a previously described
procedure®. Specifically, 3 x 10° naive cells or 1 x 10° activated cells
were pelleted (6,000 rpm, 30 s, room temperature). The medium
was quickly removed, followed by immediate addition of 50 pl of cold
metabolite extraction solvent. One minute after extraction, 4.4 pl
of NH,HCO, was added to neutralize the extract. Supernatant of the
extract was used for polar metabolites, whereas the insoluble fraction
was used for analyzing isotope labeling in biomass components.

Toobtainisotope labelingin biomass, yeast pellet (10D-mlwashed
with water) or the biomass remnantin T cells (insoluble fraction from

T cell metabolite extract washed with cold methanol) was hydrolyzed
in 100 pl of 2 M HCl at 80 °C for 2 h. Ten microliters of the hydro-
lysates was dried under N,, resuspended in LC-MS solvent (40:40:20
acetonitrilezmethanol:water) and analyzed by LC-MS.

Metabolite analysis by liquid chromatography-mass
spectrometry

Hydrophilic interaction chromatography liquid chromatography-
mass spectrometry for polar metabolites. Separation of polar metabo-
lites was achieved with hydrophilic interaction chromatography using
aVanquish UHPLC system (Thermo Fisher Scientific) and an XBridge
BEH Amide column (2.1 mm x 150 mm, 2.5-mm particle size, 130-A pore
size, Waters). LC ran at a flow rate of 150 pl min™ with a 25-min solvent
gradient and the following parameters: 0 min 85% B, 2 min 85% B, 3 min
80% B, 5 min 80% B, 6 min 75% B, 7 min 75% B, 8 min 70% B, 9 min 70%
B, 10 min 50% B, 12 min 50% B, 13 min 25% B, 16 min 25% B, 18 min 0% B,
23 min 0% B, 24 min 85% B and 30 min 85% B, where solvent A was 95:5
water:acetonitrile with20 mM ammonium hydroxide and 20 mM ammo-
nium acetate (pH 9.4), and solvent B was acetonitrile. The autosampler
temperature was4 °C, the column temperature was 25 °C, and theinjec-
tion volume was 10 pl. LC was coupled to a quadrupole Orbitrap mass
spectrometer (Q Exactive, Thermo Fisher Scientific) via electrospray
ionization. The mass spectrometer was operated in negative and posi-
tive ion switching mode and scanned from m/z70 to 1,000 at 1Hz and
140,000 resolution, with additional selected ion monitoring scanning
fromm/z650to 770 for NAD(P) cofactors. Due to the small sample size
of T cells, to avoid ion suppression at phosphate or pyrophosphate, scans
werebrokenintofour (70-96.5,97.5-176.5,177.5-194.5and 195.5-1,000);
thus, labeling in citrate and aconitate could not be detected. Data were
collected with XCalibur (Thermo Fisher Scientific).

Reverse-phase liquid chromatography-mass spectrometry for
saponified fatty acids. Saponified fatty acids were analyzed by
LC (Accela UHPLC) coupled with an Orbitrap mass spectrometer
(Exactive, Thermo Fisher Scientific). LC separation was performed by
reverse-phase ion pairing through a Luna C8 column (150 x 2.0 mm?,
3-pm particle size, 100-A pore size; Phenomenex) with a solvent gradi-
entof 0 min80%B,10 min 90% B, 11 min 99%B, 25 min 99%B,26 min 80%
Band 30 min80% B, where solvent Awas10 mM tributylamine + 15 mM
aceticacidin97:3 water:methanol (pH4.5), and solvent Bwas methanol.
The flow rate was 250 pl min, and the column temperature was 25 °C
withaninjection volume of 5 pul. The MS scans were in negativeion mode
with aresolution of100,000 and scanrange of m/z120-600. Datawere
collected with XCalibur (Thermo Fisher Scientific).

Metabolite quantitation by liquid chromatography-mass spec-
trometry. Raw LC-MS data were converted to mzXML format by Prote-
oWizard (https://proteowizard.sourceforge.ioref. 60, version 3). Peak
picking and quantitation were performed using EI-Maven software
(v.0.4.1, Elucidata). For comparing across nutrient conditions, samples
were extracted and analyzed on the same day to reduce batch effects.
Relative fold change of each metabolite was quantified by relative peak
areatop inthe chromatogram. For comparing between different yeasts
inbatch culture, *C-labeled . cerevisiae was mixed 1:1with ®*C-labeled
I.orientalis,and ®C-labeled S. cerevisiae was mixed 1:1with 2C-labeled
1. orientalis. For each compound, the ratio between labeled and unla-
beled peaks was used for relative quantitation. For samples with *C
labeling, natural isotope abundance was corrected using AccuCor®
(https://github.com/Iparsons/accucor).

Energy charge ratio. Metabolite concentrations were obtained from
LC-MS-measured relative metabolite change and basal intracellu-
lar concentrations reported earlier®” (ATP =1.9 mM, ADP = 0.45 mM
and AMP = 0.05 mM). The energy charge ratio was calculated as
([ATP] + [ADP]1/2)/([ATP] + [ADP] + [AMP]).
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Determining major fluxesin yeast

Determining metabolite concentrations in spent medium. Glu-
cose, ethanol, acetate, succinate and glycerol in spent medium were
measured with 'H NMR (500 MHz Advance I, Bruker). Trimethyl-
silylpropanoic acid (TMSP)-d, (50 mM) internal standard was diluted
1:10 in spent medium for internal reference. A fresh sample of
medium was also included to calibrate TMSP. 'H NMR spectra were
collected using the following acquisition parameters: TD = 65,536,
NS=64,D1=5s, 01P =4.68, P1=11.69, P12 =2,400, SPW1=0.002 and
SPNAMI = Gaus1_180r.1000. The following chemical shifts were used
for quantification: 0 ppm (s, 9H) for the TMSP standard, 3.22 ppm
(dd, 1H) for glucose, 1.17 ppm (t, 3H) for ethanol, 2.07 ppm (s, 3H) for
acetate, 2.60 ppm (s, 4H) for succinic acid and 3.64 ppm (m, 4H) for
glycerol. Quantitation was performed in MestReNova.

Glucose concentration was also determined by using a biochem-
istry analyzer (2900, YSI). Spent medium with an initial glucose con-
centration of 20 g I was measured with afourfold dilution to be within
linear range. Each sample was measured with at least two technical
replicates.

Growth rate and extracellular fluxes for pseudo-steady-state batch
culture. Growth rates (u) and metabolite fluxes (/) in batch culture
were determined by sampling cultures at least four times (¢) during the
exponential growth phase, starting froman OD,, of ~0.1 after allowing
the culture to adaptin fresh medium (about 1 hin aerobic culture and
4 hinanaerobic culture or antimycin treatment) to an OD,, of about
1.5 or before half of the glucose was consumed. At each time point,
the OD¢,, was measured, and the supernatant was saved for analysis
of metabolite concentration (c). The growth rate (u) was determined
with linear fitting: u = slope (In OD - t), whereas extracellular flux (/) was
the product of growth rateand theslope of c- OD,/ = u x slope (c - OD).
The resulting / was in units of mmol per liter per OD,, per h, which
was then converted to mmol per gDW per h using the OD-to-biomass
conversion factor determined in the biomass analysis (for example, for
batch culture, this conversion factor was around 0.35gDW per liter per
0Dy, for both yeasts). Errors were determined by propagating error
fromthelinear regression.

Oxygen consumption rate. The oxygen consumption rate (OCR) was
measured for batch culture with a Clark-type dissolved oxygen probe
(B40PCID, 89231-624, VWR). The culture was kept in a glass chamber,
andthetemperature was maintained by water bath. The culture was first
fully oxygenated and then sealed with the temperature-equilibrated
probe. Dissolved oxygen was measured every 20 s for 5 min or until the
oxygendropped to 60% saturation. During measurements, the culture
was gently mixed withamagnetic stirrer. The culture density used for
measurement was ODy,, = 0.2 ~ 0.3 for /. orientalisand OD,, = 0.6 -~ 0.8
for S. cerevisiae. The OCR was then calculated by linear fitting of the
oxygen concentration change over time and normalized by cell density.

Flux determination in continuous culture. After steady state was
reached, the continuous culture was sampled by collecting 1 ml of
effluent at least three times over 12 h. For each sampling, the OD,
was measured, and the remaining glucose concentration was deter-
mined by YSIbiochemistry analyzer. The whole culture was then cooled
onice and centrifuged at 4 °C. The metabolite concentration (c) was
determined in the supernatant. Fluxes (/) were then calculated as
J=drx(c,-c),wheredristhedilutionrate, and ¢, is theinitial concen-
tration in the medium normalized by biomass concentration.

Dry weight and biomass composition. We first determined the dry
weight and biomass composition in a reference yeast and developed
an LC-MS assay using this reference yeast as an internal standard to
quantify other samples. Specifically we first measured DNA, RNA, pro-
teinand carbohydrates under areference condition (S. cerevisiae under

carbon limitation at 0.1 h™) using a previously described method®.
Briefly, protein content was determined using the Biuret method with
bovine serum albumin (Thermo Fisher, 23209) calibration. Cell pel-
let equivalent to 1 ml of OD,,, =1 was washed and lysed in 300 pl of
1M NaOH at 98 °C for 5 min. One hundred microliters of 1.6% CuSO,
was then added to the lysate, and absorbance at 555 nm was used to
quantify protein concentration. For RNA quantitation, the cell pellet
was lysedin300 plof 0.3 MKOH at 37 °C for 60 min, and 100 plof 3M
HCIO,was addedto precipitate DNA and protein. The precipitant was
washed with 600 pl of 0.5 MHCIO, and all supernatants were combined.
RNA content was then determined from the combined supernatant
by measuring the absorption at 260 nm with pathlength correction
(1cm) using an extinction coefficient of 31 pug per ml A,4,. For DNA,
cell pellet equivalent to 10 ml of OD,, = 1 was hydrolyzed with 500 pl
of 1.6 MHCIO, for 30 min at 70 °Cand was allowed to react with 1 ml of
diphenylamine reagent (0.5 g of diphenylamine in 50 ml of acetic acid,
0.5 mlof98%H,SO,and 0.125 ml of 3.2% acetaldehyde water solution)
at 50 °Cfor atleast 3 h. Absorptionat 600 nm was measured from the
supernatant and used to quantify DNA concentration with the calibra-
tion of a purified DNA standard (15633019, Thermo Fisher).

Protein, DNA, RNA and carbohydratesinbiomass in other samples
were then measured by acidic hydrolysis with reference to *C-labeled
S. cerevisiae, which was cultured under carbon limitation with [U-C]
glucose at 0.1 h™. To determine biomass in a given sample, three rep-
licates of 1 ml of culture were pelleted, and each was combined with
analiquot of BC-S. cerevisiae equivalent to1 ml of OD,, = 1. The pellet
was washed with water twice and hydrolyzed in 100 pl of 6 M HCl at
80 °C and 300 rpm for 2 h with a thermomixer. The hydrolysate was
then centrifuged, and 8 pl of supernatant was dried with nitrogen gas
and redissolved in 80 pl of 40:40:20 acetonitrile:methanol:water for
LC-MS analysis. The detected monomers were categorized into com-
ponents of protein, DNA, RNA and carbohydrate and the *C:*C ratio
from each category was averaged to obtain concentration relative to
the reference condition.

Lipids in biomass were analyzed by saponification and quantified
by spiking in a mixture of *C-labeled fatty acids of highest abundance
in yeast. Specifically, three replicates of 1 ml of culture were pelleted
andsaponifiedin1 mlof 0.3 MKOHin10:90 water:methanol containing
internal C standard of 40 uM [U-*C ] palmitate, 40 pM [U-*C g]oleate
and 20 pM [U-BC gllinoleate for1 hat 80 °C. The mixture was then acidi-
fied by 100 pl of formic acid and extracted twice with 1 ml of hexane.
The top layer was separated, dried under nitrogen gas, redissolved
in 100 pl of 1:1 acetonitrilezmethanol and analyzed by reverse-phase
LC-MS. Fatty acids were quantified by >C:"C ratio for the three with the
internal reference and by MS peakintensity for other fatty acid species.

Determining major fluxesin mouse T cells

Oxygen consumption rate and respiratory capacity. T cell OCR
and extracellular acidification rate were measured using a Seahorse
XFe96 Extracellular Flux Analyzer and a published procedure with
modifications®. Specifically, 2.5 x 10° naive T cells or 1 x 10° activated
T cells were plated in poly-D-lysine-coated XF96 microplates (103729-
100, Agilent) in Seahorse RPMI medium (103576-100, Agilent) supple-
mented with 10 mM glucose and 2 mM glutamine. The cells were kept
in assay medium for less than 4 h throughout the entire procedure.
Cellular bioenergetics were assessed with the manufacturer’s Mito
Stress Test kit (103015-100, Agilent) through the sequential addition
of pyruvate (1 mM), oligomycin (oligo; 5 ptM), fluoro-carbonyl cyanide
phenylhydrazone (1 M) and rotenone/antimycin A (Rot/AA; 2 pM). The
following calculations were used to obtain parameters for the model
(also see Extended Data Fig. 2d):

mitochondrial OCR : OCRpjto = OCRpasai~OCRRot/aA

cytosolic OCR : OCRcy, = OCRpoy/an
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To account for proton leak in the metabolic model, we corrected
ATPyield of ATP synthase with coupling efficiency (CE) obtained from
the Mito Stress data with the following equation:

CE = (OCRpasa1~OCRoigo )/OCRmi

For naive cells, CE =0.861+ 0.022, and for activated cells,
CE=0.727 £0.006.

Metabolite consumption and production. Metabolite consump-
tion and production were measured by sampling the medium with or
without cells and quantitating metabolite concentration difference.
Specifically, for naive cells, cells were cultured in 0.5 ml of medium at
a density of 3 x 10° cells per ml, and media were sampled at 48 h after
isolation to measure consumption over 48 h. For activated cells, cells
were cultured in 1 ml of medium at a density of 1 x 10° cells per ml,
replaced with fresh medium at 24 h and sampled at 32 h after isola-
tion and activation to measure consumption over 8 h. To account for
evaporation and spontaneous glutamine hydrolysis (to glutamate
and ammonium under neutral pH), we included replicates of control
medium without cells, and all the spent media were compared to media
without cells under matching conditions.

Metabolite concentration was determined with internal standard
(1.1gI'*™C-algal amino acid mixture, 11 mM [6,6-’H,]glucose, 2 mM
[U-2C;s]glutamine and 10 mM [U-*C,]lactate) and calibrated with fresh
RPMI-1640 (without additional supplements). As alanine is not pre-
sentin RPMI-1640, alanine concentrationin the internal standard was
estimated from the manufacturer’s report of alanine content being
1.24 mM. For analysis, the medium was mixed 1:1 with the internal
standard, diluted 1:5in cold methanol (-20 °C) and centrifuged (10 min,
16,000 rpm, 4 °C). The supernatant was then diluted 1:4 in LC-MS sol-
vent (40:40:20 acetonitrile:methanol:,,.,) before loadingin LC-MS.

For glucose and lactate concentrations, we also obtained meas-
urements by YSI (see Determining metabolite concentrationsin spent
medium), which showed agreement with the LC-MS measurements.
Lactate productionin activated cells was also comparable to the glyco-
lytic proton efflux rate from Seahorse (derived from the extracellular
acidification rate and OCR according to the manufacturer’s instruc-
tions). Glucose and lactate flux from orthogonal methods were aver-
aged to constrain the flux model.

Biomass fluxes. The biomass synthetic flux Jy;omass; (i = protein, DNA,
RNA, glycerol-3-phosphate and fatty acid synthesis flux in the form of
acetyl-coenzyme A) was approximated by using the following equation:
I o E}{;ﬁrolysate %
biomass,i — 13C Al”
soluble

upie are the *Cenrichment of the same metabo-
liteinthe hydrolysate and soluble pool, respectively. Fractional renewal
offatty acids was directly calculated fromthe labeled fraction (1-f,. o).
M, is the mass of the biomass component, and At is the duration of
culture with tracer. The fractional renewal was averaged if there were
multiple metabolites representing the same biomass category. Here,
we used areasonable assumption that precursor labeling is much faster
than labeling of biomass, so the latter can be approximated by linear
kinetics. To measure mass of the biomass component, we used the
same LC-MS assay for yeast biomass quantitation by mixing 1 x 10°
naive or activated T cells with 1 OD-ml fully *C-labeled S. cerevisiae
pellet, followed by acidic hydrolysis and LC-MS.

We noted a less than threefold difference between the protein
synthesis rate derived from the uptake rate of essential amino acids
and that from isotope measured renewal. We used the former to con-
strain the model because it is a better reflection of net flux and does
notrequire pre-steady-state assumption.

BC HC
Where Ehydrolysate and E,

3C metabolic flux analysis

Yeast genome-scale carbon mapping model for >C metabolic flux
analysis. We developed new carbon mapping models for S. cerevisiae
and /. orientalis based on their genome-scale models, i/sor850 for /.
orientalis® and iSacel144 for S. cerevisiae (reformatted from the yeast
8.3.4 model®, as described previously®). For model reduction, flux
variability analysis®® was performed with constraints on measured
glucose uptake and byproduct (ethanol, acetate, glycerol and succi-
nate) excretions to remove reactions incapable of carrying flux under
glucose-utilizing conditions, for example, degradation pathways that
form ATP-consuming futile cycles with the biosynthesis of nucleotides,
lipids, fatty acids and carbohydrates. We also simplified intracellular
compartments by assigning nonmitochondrial reactionsto the cytosol.
Carbonmapping of reactions was obtained froma previous large-scale
mapping modelin E. coli” or for new reactions curated from the BioCyc
database®, abiochemistry textbook and the literature. Annotations of
functional groups and adjacent carbon atoms were also provided for
carbon atoms (which were previously associated with only number-
ingindexes) tofacilitate future use. The models also contain cofactor
balance (for example, ATP and NADH), charge and proton balance,
proton pumping and the electron transport chain pathway as well as
growth-associated ATP maintenance. Stoichiometries of the 52 precur-
sorsinthebiomassreactions were updated to reflect condition-specific
macromolecular composition measured in this study. The mapping
model for S. cerevisiae contains 394 reactions and 354 metabolites,
whereas the model for /. orientalis contains 386 reactions and 363
metabolites.

Mouse T cell carbon mapping model for >C metabolic flux analysis.
We developed new core carbon mapping models for mouse T cells.
The metabolic network was reconstructed using information from
the KEGG Pathway database and the mouse genome-scale model
Mouse-GEM®® (accessed via the Metabolic Atlas platform®®). Gene-pro-
tein-reaction mappings and compartmentalization of reactions were
manually assigned using information on the Mouse Genome Database®
and UniProt database (accession number UPO0O0000589). Carbon
mappings were reconstructed similar to asin yeasts. Weincluded reac-
tions that are necessary to explain measured extracellular and biomass
flux and removed reactions that will lead to futile cycle (net flux of
whichis ATP wasting) if the corresponding enzymes were not detected
inproteomics (forexample, PPCK and FBP). For simplicity, catabolism
of essential amino acids was not included because uptake of essential
amino acids correlates well with their frequency in the proteome,
and glutamine is the dominant fuel of the TCA cycle. The model also
contains energy balance (ATP), redox balance (NADH, NADPH and so
on), nitrogen balance and proton and charge balance. Stoichiometries
of the 25 precursors in the biomass reactions were updated to reflect
T cell-specific stoichiometry weighted by the measured biomass syn-
thesis flux. Namely, nucleotide stoichiometry was calculated from the
genome (ID GCF_000001635.27 for DNA) and transcriptome’® (for
RNA), whereas amino acid stoichiometry was derived from quantita-
tive proteomics from this study. The mapping model for mouse T cells
contains 200 reactions and 194 metabolites.

BC metabolic flux analysis. We used a *C MFA procedure described
previously” (formulated using the elementary metabolite unit frame-
work’™). Briefly, anonlinear optimization formulationwas used tofind a
flux solution by minimizing the sum of squared differences between the
simulated *C mass isotopomer distributions (as a function of fluxes)
and the observed distributions from both tracers as well as uptake/
excretion fluxes. The best-fit flux solution was chosen from 200 alterna-
tive solutions with randomized initializations. A goodness-of-fit test
(chi-squared) and 95% confidence interval estimation were performed
as described previously’”. For T cell ®C MFA, we used a similar pro-
cedure asinyeast, except that an additional G-factor was included for
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each metabolite toaccount for unlabeled fractions due toincomplete
mixing with a pre-steady-state pool” (likely from biomass breakdown).
The best-fit flux solution was chosen from 600 alternative solutions
with randomized initializations. We also included constraints for the
oxidative pentose phosphate pathway and isocitrate dehydrogenase
based on a previous study using *C and deuterium tracer in naive
and activated T cells*®. For both yeasts and T cells, we also included
Escher mapsin each repository for visualizing the metabolic fluxes at
https://escher.github.io/.

ATP yield of the electron transport chain. The stoichiometry of ATP
synthase is three ATP produced for every ten protons translocated
by ATP synthase’. We used this mechanistic ratio for the yeast flux
analysis, which resulted in a ratio of ATP to atomic oxygen of about
1.9in S. cerevisiae and 2.7 in I. orientalis. For T cells, we also included
in the model the measured coupling efficiency described in Oxygen
consumption rate and respiratory capacity.

Quantitative proteomics

Absolute protein abundance was quantified by IBAQ using a UPS2
internal standard. Relative protein abundance across samples was
quantified using TMTpro isobaric tags®.

Proteomics sample preparation. Yeast proteomics samples were
prepared as previously described with modifications™”. Yeast pellets
equivalent to 20 ml of OD¢,, =1 were ground by CryoMill (Retsch) at
25Hzfor 10 minand lysed in 50 mM HEPES (pH 7.2), 4% SDS and 1 mM
dithiothreitol to an approximate concentration of 2 mg ml™ protein.
ForT cells, about 3 x 10° naive T cells or 1 x 10®activated T cells were pel-
leted, washed and lysed with 40 pl of the above lysis buffer. For mouse
tissues, frozentissues were ground into powder using a CryoMill. About
10-20 mg of tissue powder was weighed and added to 400 pl of lysis
buffer per 10 mg of tissue. Protein concentrations were determinedin
the supernatant of the lysate by bicinchoninic acid assay (Pierce BCA
Protein Assay Kit, Thermo Scientific). The protein concentrationin the
final lysate was betweenland 2 mg ml™.

ForIBAQ, lysates equivalent to 300 pg of protein were spiked with
2.5 ug of UPS2 Dynamic Range Standard (Sigma). The sample was then
reduced with 5 mM dithiothreitol for 20 min at 60 °C and alkylated
with 20 mM N-ethylmaleimide for 20 min at room temperature.
Dithiothreitol (5 mM) was added to quench the excessive alkylating
reagents. Proteins were purified by methanol-chloroform precipita-
tion. The dried pellet was resuspended in 10 mM N-(2-hydroxyethyl)
piperazine-N’-3-propanesulfonic acid (EPPS; pH 8.5) with 6 M guani-
dine hydrochloride. Samples were heated at 60 °C for 15 min, and
the protein mixture was diluted threefold with 10 mM EPPS (pH 8.5).
The protein mixture was digested with 6 pg of LysC (Wako) overnight
at room temperature. Samples were further diluted fourfold with
10 mM EPPS (pH 8.5) and digested with an additional 20 ng pl™ LysC
and 10 ng pl™ sequencing-grade trypsin (Promega) at 37 °C for 16 h.
For samples with limited protein amounts, proteins were precipitated
following reduction and alkylation using the SP3 method, as previously
described””. After binding and washing the bead-bound protein, the
protein-containing beads were resuspended in 2 M guanidine hydro-
chloride and digested with LysC and trypsinin two steps, as described
above. After digestion, the peptides were cleared by ultracentrifuga-
tion at 100,000g for 1 h at 4 °C (Beckman Coulter, 343775), and the
supernatant was vacuumdried. The dried peptides were resuspended
and desalted usinghomemade stage tips with C18 material (Empore).
The samples were resuspended in 1% formic acid to 1 pg pl™ before
LC-MS analysis.

For TMT labeling, premixed TMTpro tags (16-plex and 18-plex,
Thermo Scientific, 20 pg plin dry acetonitrile stored at—80 °C) were
added ataratio of 5 pg of TMTpro:1 pg of peptide to the above super-
natant containing 200 pg of peptides, mixed and incubated at room

temperature for 2 h. The reaction was then quenched by addition of
5 pl of 5% hydroxylamine (Sigma, HPLC grade) at room temperature
for 30 min. The resulting mixture was vacuum dried, desalted and
resuspended, as described above for the LC-MS analysis.

Allreplicates of T cells and tissues and one replicate of each yeast
strain frombatch culture were also analyzed after prefractionation to
detectalarger number of peptides. Specifically, before LC-MS analysis,
thedried peptides were resuspendedin 10 mM ammonium bicarbonate
(pH 8) with 5% acetonitrile to a peptide concentration of 1 pg pl ™. The
dissolved peptides were separated into 96 fractions using medium
pH reverse-phase separation (Zorbax 300Extend C18, 4.6 x 250 mm
column) on a 1260 Infinity Il LC system (Agilent), as described previ-
ously’”. Eachresulting 96-well plate was combined into 24 fractions’®,
and each fraction was desalted and resuspended for LC-MS analysis,
asdescribed above.

Peptide analysis by liquid chromatography-mass spectrometry.
Samples were analyzed on an EASY-nLC 1200 HPLC (Thermo Fisher
Scientific) coupled to an Orbitrap Fusion Lumos mass spectrometer
(Thermo Fisher Scientific) with Tune version 3.3. Data were collected
using XCalibur (Thermo Fisher Scientific). Peptides were separated
on an Aurora Series emitter column (25 cm x 75 pm inner diameter,
1.6-um C18; lonopticks) and were held at 60 °C using anin-house-built
column oven. Solvent A consisted of 2% DMSO (LC-MS grade, Life
Technologies) and 0.125% formic acid (98%+, TCI America) in water
(LC-MS grade, OmniSolv, VWR), and solvent B consisted of 80% ace-
tonitrile (LC-MS grade, OmniSolv, Millipore Sigma), 2% DMSO and
0.125% formic acid in water. The following 90-min gradient was applied
at a constant flow rate of 350 nl min™ after thorough equilibration of
the columnto 0% B: 0-6% B in 5 min, 6-25% B for 70 min, 25-100% for
10 minand 100% for 5 min.

For electrospray ionization, 2.6 kV was applied between 1 min
and 83 min of the LC gradient. The Fusion Lumos was operated in
data-dependent mode. The survey scan was performed ataresolution
setting 0f 120,000 in Orbitrap, followed by an MS? duty cycle of 1.5 s.
The normalized collision energy for collision-induced dissociation
MS? experiments was set to 30%, and the higher-energy collisional
dissociation collision energy was set at 24%. The ion trap detector
was used for MS? scans of label-free samples or conjugate ion quan-
tification of TMT-labeled samples’ (<9 plex). An Orbitrap detector
was used for MS® scans of 18-plex samples. To avoid carryover of pep-
tides, 2,2,2-trifluoroethanol (>99% ReagentPlus, Millipore Sigma)
was injected in a30-min wash between each sample. For fractionated
samples, this wash was performed between every three fractions from
the same original sample.

Proteomics data analysis. The data were analyzed using GFY software
licensed from Harvard University. Raw files were converted to mzXML
using ReAdW.exe. MS? spectra assignment was performed using the
SEQUEST algorithm v.28 (rev. 12) by searching the data against the
combined reference proteomesfor S. cerevisiae (S288C: UP0O00002311,
24 February 2021; CEN.PK, UP000013192, 20 August 2021), /. orientalis
(UP000029867,13 November 2019) and Mus musculus (UPOO0000589,
11 October 2022) acquired from UniProt merged with the UPS2 Prot-
eomics Standards FASTA file provided by the manufacturer (https://
www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/
global/fasta-files/upsl-ups2-sequences.fasta) along with common con-
taminants such as human keratins and trypsin. The target-decoy strat-
egy was used to estimate the peptide false discovery rate (FDR)”’, and
a1% FDR cutoff was used for MS? spectral assignment. A 20-ppm pre-
cursoriontolerance with the requirement that both N-and C-terminal
peptide ends are consistent with the protease specificities of LysC
and trypsinwas used for SEQUEST searches. One missed cleavage was
allowed, and NEM was set as a static modification of cysteine residues
(+125.047679 Da). Fragment ion tolerance in the MS? spectrum was set

Nature Chemical Biology


http://www.nature.com/naturechemicalbiology
https://escher.github.io/
https://www.uniprot.org/proteomes/UP000002311
https://www.uniprot.org/proteomes/UP000013192
https://www.uniprot.org/proteomes/UP000029867
https://www.uniprot.org/proteomes/UP000000589
https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/fasta-files/ups1-ups2-sequences.fasta
https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/fasta-files/ups1-ups2-sequences.fasta
https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/fasta-files/ups1-ups2-sequences.fasta

Article

https://doi.org/10.1038/s41589-024-01571-y

at1Th. Filtering was performed using a linear discriminant analysis
with the following features: Sequest parameters XCorr and unique
AXCorr, peptide length, missed cleavages, adjusted PPM, fraction of
ions matched and charge state. Forward peptides within 3 s.d. of the
theoretical m/z of the precursor were used as the positive training
set. Allreverse peptides were used as the negative training set. Linear
discriminant scores were used to sort peptides with at least seven resi-
duesandtofilter withthe desired cutoff. Furthermore, we performed a
filtering step on protein level using the ‘picked’ protein FDR approach®.
Proteinredundancy was removed by assigning peptides to the minimal
number of proteins, which can explain all observed peptides, with the
above-described filtering criteria®.

Relative quantification of TMT-tagged samples was performed
by summing the area of TMT reporter ion belonging to each protein.
The signal was normalized to the mean across samples and then
median normalized within each sample. To quantify absolute protein
abundancesinlabel-free samples, for each protein, area of precursor
ion intensity from all peptides was summed and normalized by the
number of theoretical peptides. Signals from UPS2 proteins were
used to construct a calibration curve, which was then fitted to apower
law (log (intensity) = k x log (concentration) + constant) to obtain
the absolute concentration of yeast proteins (log linear coefficient
k=1.25+0.08, on average). For yeasts, absolute protein abundance
in batch culture is reported as mass fraction in the whole proteome,
which was approximated by the product of concentration and amino
acid sequence length normalized to the sum of all proteins. Absolute
proteinabundance under nutrient limitation or respiratory-deficient
conditions was inferred from the relative fold change to batch culture
obtained with relative quantification. For T cells and mouse tissues,
TMT-tagged samples were spiked in UPS2 standards so that the relative
abundance between samples and total abundance of all samples could
be quantified simultaneously.

Pathway assignment. Each S. cerevisiae protein was assigned to a func-
tional sector based on Gene ontology from UniProt and pathway anno-
tation from the genome-scale metabolic model yeast 8.3.4 (ref. 64). 1.
orientalis proteins were assigned based on protein sequence identity
to S. cerevisiae obtained from blastp (https://blast.ncbi.nlm.nih.gov/
Blast.cgi?PAGE=Proteins). Functional assignmentin mouse was based
on pathway and Gene ontology from UniProt (UPOO0000589), subsys-
tem from the mouse genome-scale metabolic model®® (https://github.
com/SysBioChalmers/Mouse-GEM/tree/main/model), KEGG ontology
from proteomap® (https://www.proteomaps.net/) and mitochondrial
localization from MitoCarta2.0 (ref. 83). Glycolytic and respiratory
protein assignments for NCI60 cells were obtained from Zielinski
et al.. The complete list of functional assignments can be found in
Supplementary Table15.R code to generate the pathway assignments
canbefoundatthe GitHub repository (https://github.com/yihuishen/
metabolic_flux_regulation/).

Proteome efficiency

ATP flux. For yeast and mouse T cells, glycolytic ATP production was
calculated as PGK_c + PYK_c - HEK_c - PFK_cflux. Respiratory ATP pro-
ductionisrepresented by the flux through ADPATPt_c_m, the mitochon-
drial ADP/ATP transporter. The 95% confidence interval (Ib, ub) was
obtained from *C MFA, based on which the ATP flux was determined
as (Ib + ub)/2 with astandard error of (ub - 1b)/3.84.For NCI60 cancer
cells, the flux datawere obtained from a previous flux analysis using a
model that assumes four proton translation per ATP production from
the ATP synthase® and constrained by experimentally measured rates
(growth, uptake and excretion)®*. ATP production was obtained similar
to yeast. Flux in mouse tissues was obtained from a recent study that
measured TCA flux and glucose uptake in vivo”. Respiratory ATP flux
was calculated as 14.5 ATP per acetyl-coenzyme A oxidized in the TCA
cycle (as performed in the original study®’), whereas glycolytic ATP

flux was based ontwo ATP per glucose. Wet tissue mass was converted
todry mass by afactor of 0.4, and protein was assumed to account for
half of dry mass.

Flux-partitioned proteome allocation. Because glycolysisis used to
provide precursors for respiration, and both glycolysis and respiration
are used to provide biomass precursors, proteome allocation required
for fermentation’ (converting glucose to ethanol) and ‘respiration’
(converting glucose to CO,) was calculated based on flux partitioning’.
Briefly, the protein cost of enzymei, £, was divided among fermentation
(f), respiration (r) and biomass (bm). Its cost for function k, £, is pro-
portional to the carbon fluxits productis used for k, j,,

i _ fi, jk
fk _f ijk.

Jrisapproximated by the OCR, jsis approximated by three times the
ethanol excretion flux, andj,, is derived fromthe precursor stoichiom-
etry in the biomass equation. For simplicity, OXPHOS is not required
for biomass precursors.

Competitive coculture and fitness

Coculture and genomic DNA extraction. Overnight cultures of S.
cerevisiae CEN.PK and /. orientalis SD108 were mixed 1:1 according to
0D, pelleted and inoculated into fresh medium at an ODq, of 0.5.
The cultures were then grown aerobically under one of the following
conditions:aerobic10 g™ ethanol,20 g I glucoseand 20 g 1' sucrose
YNB with serial transfer for 12-14 h or in aerobic glucose-, ammonia-
or phosphate-limited continuous culture at a 0.1 h™* dilution rate for
24 h.For (cyclically) anaerobic culture in glucose, anaerobic phase was
achieved by sparging nitrogen into the culture at the desired duty cycle
(75%,18 h/24 h; 87%,21h/24 h;100%, 24 h/24 h). Anaerobic culture was
achieved by sparging nitrogen into the culture with 20 g1 glucose.
Relative abundance of the two yeasts was measured by quantitative
PCR (qPCR) at four to six time points and was used to obtain fitness.
Specifically, at each time point, 1 ml of coculture was pelleted, and the
restwasthendiluted with fresh medium to keep the OD,,, of the culture
toapproximatelinaerobic culturesor 0.5in (cyclically) anaerobic cul-
tures. Calibration curves were also prepared by mixing single cultures
atdifferent ratios. The cell pellet was lysed by lyticase (Sigma-Aldrich,
L4025), and genomic DNA was extracted with a DNeasy Blood & Tissue
kit (Qiagen) following the manufacturer’s procedure.

Determine relative species abundance by gPCR. Relative abun-
dance of S. cerevisiae and I. orientalis was determined by qPCR
of the pho2 genomic sequences for S. cerevisiae (gene ID 851452,
NM_001180165.1) and the distant homolog for I. orientalis (gene ID
40382003, XM_029463910). qPCR primers were designed using
OligoArchitect Online (Sigma-Aldrich, http://www.oligoarchitect.
com) and checked for cross-hybridization against the genomic
sequences of both species using BLAST (https://blast.ncbi.nlm.nih.
gov/Blast.cgi). The primers and probes used for S. cerevisiae were
CTCTCTTCTTCGATCATG (sense), TCTCCTCATTATTAGCATTATG
(antisense) and 6-FAM-ATAACCAACACCAACAACGGACAAG-0OQA
(probe), and the primers and probes used for /. orientalis were GAGA-
CTAGCACCCTTAAC (sense), CGTTCACATCTACACTGA (antisense)
and JOE-ACAGCCTCCACAACGACTTCT-TAM (probe; Sigma-Aldrich).
For competitive coculture of /. orientalis ANde and APdc strains, we
used primers that target Pdc and probes that recognize wild-type and
mutated Pdc, respectively. The primers used were CCACGTYAAGGAA-
GTTGAA (sense) and AGGTGGTGATTAGGGATG (antisense), and the
probes used were 6-FAM-ATTCTTGCATAACCATCAGCTTCGTA-BHQ-1
(wild type) and JOE-AATCCATTGATTCTTGCATTAGCCG-TAMRA
(mutant). Primers and probes were tested for nonspecific
cross-reactivity using iTaq Universal Probes Supermix (Bio-Rad,
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1725132) individually and in combination with genomic DNA from both
speciesinvarious ratios. No cross-activity was observed. For qPCR, 1to
2 ngofisolated DNA was used per 10-pl assay containing 250 nM of each
primer and 125 nM of each probe in a 384-well plate. Assays were per-
formed using the Applied Biosystems ViiATM7 Real-Time PCR System.
Relative abundance was quantified from the calibration curve and fitted
tolog (strain1/strain 2) =fitness x ¢ + constant to obtain relative fitness.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Allraw data, including metabolic flux, proteomics and proteome effi-
ciency data, are provided in the Supplementary Tables or publicly avail-
ablerepositories. The following accession numbers were used to access
publicly available proteomes: S. cerevisiae (S288C: UP0O00002311, 24
February 2021; CEN.PK, UP000013192, 20 August 2021), /. orientalis
(UP000029867,13November 2019) and M. musculus (UPOO0000589,11
October2022). We also queried Mouse-GEM®® and the Mouse Genome
Database® for mouse genome information. Some of the healthy mouse
tissue proteomics dataare from PaxDb*'. The MS proteomics data gen-
erated inthis study have been deposited to the ProteomeXchange Con-
sortium via the PRIDE® partner repository with the dataset identifiers
PXD048012 (1. orientalis), PXD048018 (S. cerevisiae) and PXD048041
(M. musculus). Source data are provided with this paper.

Code availability

Dataanalysis and visualization were performedinR (version3.5.1) and
MATLAB (version 2021b). R code for multiomic integration and meta-
bolicregulation analysisis available at https://github.com/yihuishen/
metabolic_flux_regulation. Input data and metabolic models for MFA
can be found at https://github.com/maranasgroup/yeastsMFA and
https://github.com/yihuishen/T_cell_ MFA. MATLAB code for yeast MFA
canbefound at https://github.com/maranasgroup/SteadyState-MFA.
Some of the figures were made with BioRender.
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Extended Data Fig. 2| Metabolic measurement for T cell metabolic flux
analysis. (a) Overview of *C metabolic flux analysis in mouse T cells. Primary
CD8+T cells were purified from murine spleen, and kept in IL7 to remain in

naive state or activated by aCD3 and «CD28 in the presence of IL2 for 24hrs.
Marker expression (CD69-FITC, CD25-APC) was evaluated by flow cytometry.
(b) Isotope enrichment in central metabolites with [U-*C¢]glucose or [U-C;]
glutamine tracing. *C enrichment shows the average C labeling per carbon
atom.Mean ts.e.m., n=3. (c) Media nutrient exchange flux. Positive and negative
values indicate uptake and excretion, respectively. Numbers show fold change
between naive and activated T cells, with negative values reflecting change in
flux direction. Mean +s.e.m.,n=12(0,), n=4 (others). (d) Oxygen consumption
rate (OCR) were measured with Mito Stress test through the sequential addition
of pyruvate (pyr, 1mM), oligomycin (oligo, SuM), fluoro-carbonyl cyanide
phenylhydrazone (FCCP, 1uM), and rotenone/ antimycin A (Rot/AA, 2 uM).

Mean +s.e.m., n=12. (e) Biomass (DNA, protein, and RNA) renewal flux is the
product of mass composition and fraction renewed measured by *C enrichment
in the biomass hydrolysate normalized to monomer in soluble metabolites.
Mean +s.e.m., n=6. Flux, mean +s.d. error propagated from mass and fraction
renewed. (f) Fold change of metabolic fluxes (from '*C MFA) between activated
and naive T cells. (g) Flux balance of NADH and TCA four-carbon metabolites
(TCAC,).LDH, lactate dehydrogenase; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; GLUN, glutaminase; ME, malic enzyme; PC, pyruvate
carboxylase; Glu, glutamate. (h) Isotopomer ratio (from LC-MS) reveals flux ratio
(best estimate from *C MFA) between malic enzyme (ME) and glycolysis. M+3
pyruvate (Pyr) is produced by ME from M+4 malate (Mal), whereas M+0 Pyr is
produced from glycolysis. Note that malic enzyme flux increases in activated

T cells despite areduced isotopomer ratio. Mean +s.e.m., n=3.
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a Comparison to 19 reference proteomics data sets in S. cerevisiae
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Extended Data Fig. 3| Quantitative proteomicsinyeastsand T cells.

(a) Comparison between the S. cerevisiae proteomics generated in this study
and in other studies®?. Data show mass fraction of functional sectors. Median
+s.e.m., p value from two-sided student t test between literature data and our
datawithout adjustment, n=19 (literature data); n =4 (biological replicates, this
study); *, p<0.05, n.s., p>0.05. Pearson’s correlation R=0.88 (p = 1E-5) between
our proteome allocation and the median of reference (n=14 sectors). (b) Protein
abundance of yeasts. Total protein mass and breakdown in each functional
sectors (left) and allocation to individual reactions (right). Fold change (FC)
from /. orientalisto S. cerevisiae is shown on the bottom. Enzyme abundance

(sum of isozymes, if any) of individual reactions in glycolysis, TCA, and OXPHOS
pathways. Mean *s.e.m., n=4. Two-sided student t test with Bonferroni FDR
correction, n.s., p>0.05;* p<0.05;**, p<0.005; **,p<0.0005. (c) Protein
abundance of T cells. Total protein mass and breakdown in each functional
sectors (left) and allocation to individual reactions (right). Fold change (FC) from
naive to activated is shown on the bottom. Enzyme abundance (sum of isozymes,
ifany) of individual reactions in glycolysis, TCA, and OXPHOS pathways. Fold
change of individual genes is also shown. Mean + SEM, n = 3. Two-sided student
ttest with Bonferroni FDR correction, n.s., p > 0.05; ***, p< 0.0002.
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Extended Data Fig. 4 | Proteome efficiency with flux-partitioning or
mitochondrial proteins. (a) Repartitioning of glycolytic and respiratory
proteomes in proportion to flux distribution to biomass, fermentation, and
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cultured yeasts, mean +s.e.m., error propagated from 13C metabolic flux analysis
and proteomics (n=4). (b) Flux-partitioned proteome efficiency of respirationin
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glucose-6-phosphate dehydrogenase (G6PD), respectively, and normalized
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and healthy without adjustment, n.s., p>0.05; *, p<0.05; **, p< 0.005; ***,p <
0.0005. Fold changes (FC) are shown on the bottom of each graph. (b) Mass
fraction of proteome sectors asin (a). (c) Differential protein expression between
healthy pancreas and PDAC. Top, glycolytic and respiratory proteins (fold change
between PDAC and healthy pancreas), mean, n =3. Bottom, hypoxia-inducible
factor la (Hifla), individual replicates and boxplot (median with quartiles).
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infiltrated with Notch1-driven leukemia (leukemic spleen). Mean +s.e.m.,n=3.
Two-sided student t test between tumor and healthy without adjustment, n.s.,
p>0.05;* p<0.05;*,p<0.005;**,p<0.0005. Fold changes (FC) are shown on
the bottom of each graph. (e) Mass fraction of proteome sectors as in (d).

(f) Differential expression of glycolytic and respiratory proteins between healthy
and leukemic spleen (fold change between leukemic and healthy spleen), mean,
n=3.(g) Flux partitioned proteome efficiency considering flux contribution
from glycolysis to respiration (Cglyc->resp), based on data in Fig. 4. For NCI60
cancer cells, Cglyc->resp is quantified as the ratio between mitochondrial
pyruvate carrier flux and glucose uptake flux. For mouse tissues and tumors,
Cglyc->respis the flux ratio between glucose oxidation (estimated as 40% of TCA
cycle) and glycolysis.
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Extended Data Fig. 7 | Metabolism of evolutlonarlly divergent budding
yeasts. (a) Growth rates (top left) and glucose consumption rates (bottom left)
and their relation (right) of 13 yeasts cultured in minimal YNB media containing
20g/L glucose. 14 budding yeasts with top growth rates in YPD were selected,
with C. petersoniinot able to grow in YNB. Mean + s.e. (error from regression),

n=3time points for n=2or 4 biological replicates. (b) Ethanol production
rate (left) and its relation with glucose consumption rate (right) of the top 16
fast-growing yeasts in YPD containing 20g/L glucose. Mean + s.e. (error from
regression), n=3 time points for n =2 biological replicates.
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Extended Data Fig. 8 | Alternative explanations for aerobic glycolysis. (a) Fold
change in metabolite abundance between /. orientalis and S. cerevisiae cultured
inglucose YNB. Inset shows the ratio between NAD" and NADH. Metabolite
abundance was measured by LC-MS, mean, n= 6, p value from student t test with
Bonferroni adjustment for multiple comparisons. Inset, mean +s.e.m.

(b) Reaction Gibbs energy under physiological concentrations (top), total Gibbs
energy dissipation rate (inJ/mol) for ATP synthesis and hydrolysis in /. orientalis
and two strains of S. cerevisiae (bottom left), and dissipation per ATP production

as afunction of ATP:oxygen (PO) ratio (bottom right). In the equations for
dissipation per ATP, 2 reflects 2 ATP made per glycolysis, 12 reflects 12 pairs
high-energy electrons made per glucose by respiration, and12- PO is ATP yield
per glucose by respiration. Shaded areas show experimentally obtained PO
ratio (95% interval, see ‘Assessment of PO ratio’ in Ext. Data Note) for S. cerevisiae
and /. orientalis. Mean = s.d. propagated from error of flux measurement and
flux analysis.
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Extended Data Fig. 9 | Fitness and proteome allocation of yeasts in aerobic
and anaerobic conditions. (a) Dissolved oxygen measured at the bottom of a
multi-well plate culture with OxoPlate (phosphorescent oxygen sensor). Fresh
exponential culture was added to the plate at indicated density and allowed to
adapt for 15min. Oxygen concentration was then measured with or without
active shaking. The typical maximal cell density (OD) from fully aerated culture
isabout 4. (b) Competitive fitness of lab adapted /. orientalis mutants, APdc
(nullmutant for pyruvate decarboxylase, essential for ethanol fermentation)
and ANde (null mutant for cytosol-facing NADH dehydrogenase, which feeds
into the electron transport chain). 3 colonies of mutants were adapted for

14 days before competitive coculture. Relative fitness, mean +s.e.m.,n=8.

(c) A coarse-grained model where yeast growth is constrained by flux balance,
energy (ATP) limitation, and proteome allocation. G, glycolysis; R, respiration;
T, translation. For explanation of parameters and the model, see Ext. Data Note.

(d) Maximal aerobic and anaerobic growth rate (i) under different glycolytic

(f;) and respiratory protein abundance (fy) (mass fractions of whole cell dry
weight). Stars, optimal proteome allocation in aerobic and anaerobic conditions.
Circles and triangles indicate measured proteome fractions in glucose-fed

batch cultures of . orientalis (aerobic, +02; or anaerobic, -02) and S. cerevisiae
(aerobic, +02). (e) Experimental glucose consumption (J¢,¢) and ethanol
excretion (Jgon) rates (symbols, in mmol/h/gDW) and prediction from proteome-
constrained model (lines) under high (S. cerevisiae) or low (/. orientalis) glycolytic
proteome capacity (r). Literature data was obtained from Van Hoek 1998°.

(f) Growth rate of wild type (WT) and adapted ANde mutant /. orientalis in aerated
and settled culture. Datashow WT and three colonies of ANde mutant picked
after al4-day adaptation. Mediais YPD with 20g/L glucose. Mean +s.e.m.,
n=3(aerated) n=4 (settled).
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender NA

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. Sample size was chosen based on empirical evaluation of biological variance and technical noise
Data exclusions  No data was excluded

Replication Biological replicates have been performed independently where indicated in the manuscript. The replicates are consistent.
Randomization Randomization is not applicable as other variables are controlled or not relevant to the study.

Blinding Blinding is not applicable as data is acquired by the same person who designed the experiment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
Y
(e
)
1®)
o
=
o
S
_
(D
1®)
o
=
5
(@}
wm
[
=
3
Q
<




Materials & experimental systems Methods

a | Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq

|:| Eukaryotic cell lines |:| |Z Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

>
S~

|Z Animals and other organisms
[] clinical data

|:| Dual use research of concern

X X X X [

Antibodies

Antibodies used anti-CD3 (10 pug ml-1, Bio X Cell, BEOOO1-1), anti-CD28 (5 pug ml-1, Bio X Cell, BEO015-1), CD4 (APC-Cy7, 1:100, clone RM4-5, BD
Biosciences, 565650), CD8a (PerCP-Cy5.5, 1:100, clone 53-6.7, BD Biosciences, 551162), CD25 (APC, 1:100, clone PC61, BD
Biosciences, 557192), CD44 (PE-Cy7, 1:100, clone IM7, BD Biosciences, 560569), CD62L (PE, 1:100, clone MEL-14, BD Biosciences,
561918) and CD69 (FITC, 1:250, clone H1.2F3, BD Biosciences, 557392).
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Validation The manufacturer Bio X Cell provided references showing in-vitro activation of T cells using anti-CD3 and anti-CD28.
anti-CD3
https://bioxcell.com/invivomab-anti-mouse-cd3e-be0001-1?gad_source=1&gclid=CjOKCQiA4Y-
sBhCE6ARISAGXF1g4dw9QkkZuQaeAKSmp71F-PIIIGEOZMGEXR17AHaK7txDvM6D2VuAcaAlQUEALW_wcB
anti-CD28
https://bioxcell.com/invivomab-anti-mouse-cd28-be0015-1

The manufacturer BD Biosciences provide QC testing of reactivity with mouse antigen, and also validation for use in flow cytometry
analysis of mouse splenocytes for CD4, CD8a, CD25, CD44, CD62L, CD69

anti-CD4
https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/
apc-cy-7-rat-anti-mouse-cd4.565650

anti-CD8a
https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/
percp-cy-5-5-rat-anti-mouse-cd8a.561109

anti-CD25
https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/
apc-rat-anti-mouse-cd25.557192

anti-CD44
https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/
pe-cy-7-rat-anti-mouse-cd44.560569

anti-CD62L
https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/
pe-rat-anti-mouse-cd621.561918

anti-CD69
https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-ruo/
fitc-hamster-anti-mouse-cd69.557392

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals C57BL/6 mice (Charles River Laboratories) were used CD8+ T cell isolation. Female mice aged between 8 and 12 weeks were used
unless otherwise noted. Mice were housed under a normal light cycle (7 AM to 7 PM), at room temperature of 20-262C and a
humidity of 40-60%, with water and food (PicoLab Rodent Diet 5053, LabDiet) provided ad libitum.with water and food (PicoLab
Rodent Diet 5053, LabDiet) provided ad libitum. Healthy and tumorous tissues were obtained from mice described in an earlier study
(Bartman et al. Nature 2023), including spontaneous pancreatic adenocarcinoma (GEMM PDAC, Pdx1-cre;LSL-Kras-G12D/+;Trp53fl/fl)
mice, Syngeneic pancreatic adenocarcinoma allograft tumors (flank PDAC, established by implanting tumors from Pdx1-cre;LSL-Kras-
G12D/+; LSL-Trp53-R172H/+ mice subcutaneously into the mouse flank), primary T-cell acute lymphocytic leukemia (leukemic spleen,
NOTCH1-induced primary transplanted into sub-lethally irradiated recipients).

Wild animals Study did not involve wild animals §
a
Reporting on sex Sex was not considered in study design. S

Field-collected samples  Study did not involve field-collected samples

Ethics oversight All mouse experiments were approved by the Institutional Animal Care and Use Committee at Princeton University (protocol number
3111)

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Purity of naive CD8+ T cells (98%) and expression of activation markers were verified by flow cytometry. Specifically, cells
were collected, washed with staining buffer (PBS + 2% FBS) and stained with the viability dye Live/Dead Aqua (Thermo Fisher,
L34966) according to the manufacturer’s instructions. Cells were then washed with staining buffer and stained for surface
markers on ice for 30 min: CD4 (APC-Cy7, 1:100, clone RM4-5, BD Biosciences, 565650), CD8a (PerCP-Cy5.5, 1:100, clone
53-6.7, BD Biosciences, 551162), CD25 (APC, 1:100, clone PC61, BD Biosciences, 557192), CD44 (PE-Cy7, 1:100, clone IM7, BD
Biosciences, 560569), CD62L (PE, 1:100, clone MEL-14, BD Biosciences, 561918) and CD69 (FITC, 1:250, clone H1.2F3, BD
Biosciences, 557392).

All flow cytometry was analyzed with an LSR Il flow cytometer (BD Biosciences).
Data were collected and analyzed by FCS Express 7.12 (De Novo Software)

No post-sorting populations were used. Purity of magnetic-bead-isolated naive CD8+ T cells was confirmed by expression of
CD8+ markers (CD62L). Activation was confirmed by CD25 and CD69.

FSS/SSC lymphocyte gate (95%), singlet gate (98%), live/dead (98%), CD8+ (using CD4 vs CD8, 99%), naive (CD62L vs CD44,
99%), activated (CD69 vs CD25, 90%).

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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