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SUMMARY

A biochemical explanation of development from the
fertilized egg to the adult requires an understanding
of the proteins and RNAs expressed over time during
embryogenesis. We present a comprehensive char-
acterization of protein and mRNA dynamics across
early development in Xenopus. Surprisingly, we find
that most protein levels change little and duplicated
genes are expressed similarly. While the correlation
between protein and mRNA levels is poor, a mass
action kinetics model parameterized using protein
synthesis and degradation rates regresses protein
dynamics to RNA dynamics, corrected for initial pro-
tein concentration. This study provides detailed data
for absolute levels of �10,000 proteins and �28,000
transcripts via a convenient web portal, a rich
resource for developmental biologists. It under-
scores the lasting impact of maternal dowry, finds
surprisingly few cases where degradation alone
drives a change in protein level, and highlights the
importance of transcription in shaping the dynamics
of the embryonic proteome.

INTRODUCTION

Embryonic development had been traditionally described in

anatomical terms, tracing organs and structures to reveal line-

ages and explain morphogenesis. Recently such descriptions

have been greatly augmented by RNA expression studies,

revealing many molecular events where there were few

anatomical markers (Struhl, 1981). When such data are coupled

with genetic or pseudo-genetic manipulations, plausible

pictures emerge of the regulatory circuits underlying develop-

mental changes. Most recently there have been efforts to incor-

porate these data into mathematical models of developmental

processes (Peter et al., 2012). Their limitation hinges on the dif-

ficulty of relating RNA levels directly to the phenotype. Protein

is closer to the phenotype than RNA, but protein analysis

methods are far less sensitive than those for RNA. Protein
Developm
abundance may also not be the whole story: posttranslational

modifications may provide crucial regulatory input. There are

many examples where RNA level is misleading as a measure

of protein function, e.g., cyclin proteins in the cell cycle or

p53 in tumors. Whether many other misleading examples occur

in the embryo is not known. Information on the relationship be-

tween RNA and protein is generally unavailable at the genome

and proteome scale.

Fortunately, methods now allow low mRNA levels to be de-

tected and quantitated accurately by RNA sequencing (RNA-

seq), and specific RNAs to be localized by single-molecule

FISH. Although protein methods are more complex, difficult,

and expensive, and less sensitive, the relative abundance of

proteins in the bulk embryo can also be measured using multi-

plexed approaches. Major unappreciated pitfalls in the first

applications of multiplexed mass spectrometry (MS) have

now been circumvented by new analysis methods (McAlister

et al., 2014; Wühr et al., 2012). Nevertheless, serious limita-

tions in applying these techniques to embryos remain. A single

sample requires about 50 mg of protein, which would represent

�1,000 mouse embryos. Accurately determining the kinetics of

RNA accumulation requires synchronized embryonic samples.

Several non-traditional systems are naturally synchronized, but

MS methods require a well-curated reference set of protein

sequence information, which is often unavailable. Finally,

highly abundant proteins like serum or yolk must be removed

without depleting other proteins. The Xenopus system ad-

dresses all these issues: single embryos have about 25 mg of

non-yolk protein and in vitro fertilization yields very accurate

synchrony (Gurdon and Wickens, 1983; Wühr et al., 2014).

A good reference genome has recently been generated for

Xenopus (Bowes et al., 2010), and we now have highly repro-

ducible protocols for efficient removal of yolk while sparing

other cellular components. For many years, Xenopus was the

model of choice for early development in vertebrate species

with many experimental results and conceptual findings,

generalizable to all vertebrate embryos. Previous attempts at

proteomic characterization of Xenopus embryonic develop-

ment suffered from inferior accuracy of the MS2 methods

and covered fewer proteins than we report, at fewer time

points (Sun et al., 2014). An initial effort to compare RNA and

protein levels found disagreement but provided no satisfactory

explanation (Smits et al., 2014).
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Figure 1. Early Embryonic Stages inX. laevis

(A) mRNA and protein were collected from various

stages of development.

(B) The dataset combines temporal profiles of

27,877 mRNA and 6,509 proteins and egg con-

centration data for 9,728 proteins.

(C) A histogram of �8,000 cosine distances be-

tween published and new mRNA profiles. Three

sample mRNA profiles—Chordin, Tenascin N, and

Secernin—are given as published (solid) and new

RNA-seq data (dashed).

(D) A histogram of 35 cosine distances between

published and new protein abundance changes.

Three proteins quantified via western blot (solid)

and multiplexed proteomics (dashed) with repre-

sentative cosine distances color coded.
Experimental embryology has provided extraordinary

insight, but little understanding, on the biochemical level.

Physiological features of embryos were emphasized in the

pre-molecular biology era (Brachet, 1950), but have not been

explored with modern methods. In this first publication we

offer a survey of the economy of the egg and embryo, some-

thing not achievable until the elaboration of genome-wide

methods. This broad perspective can already be used to

inform our understanding of the many biochemical changes

underlying embryonic development. In many species, including

the frog, the earliest stages of development proceed without

new transcription, suggesting that the control of protein

behavior might proceed through unmasking of RNA for trans-

lation or through degradation or posttranslational modification

of existing proteins. After the mid-blastula transition (8,000 cell

stage in the frog) transcription is turned on (Newport and

Kirschner, 1982), and it has been suggested that the original

maternal proteins might rapidly turn over at this point (Howe

et al., 1995). Possible hypotheses about the protein economy

range from all proteins synthesized on demand, at the right

time and location, to stockpiling of all proteins in the egg, fol-

lowed by rearrangement and/or degradation of proteins that

are in the wrong place. Using our quantitative time-resolved in-

ventory of RNA and protein, we have developed a picture of

the overall strategies used by the egg and embryo. We also

provide a deep dataset of individual stories of proteins and

RNA that can now be woven, by us and others, into narratives

that can help elucidate development.

RESULTS

Genome-wideMeasurements of RNA and Protein Levels
across Key Developmental Stages
We profiled developmental stages (Nieuwkoop and Faber, 1994)

spanning early development from unfertilized egg (NF 0) through

blastula (NF 5–9), gastrula (NF 10–12.5), neurula (NF 13–21), and

tailbud. Stage NF 23 is characterized by presence of blood

islands and first appearance of olfactory placodes. The last

time point (NF 33) is taken when heartbeat has started and the

tadpole is ready to hatch. Our processing pipeline for quantita-

tively measuring levels of RNA and protein is sketched in Fig-
384 Developmental Cell 35, 383–394, November 9, 2015 ª2015 Elsev
ure 1A. Proteins were digested into peptides and change

of abundance was measured by isobaric labeling followed by

MultiNotch MS3 analysis (McAlister et al., 2014); absolute pro-

tein abundance was estimated via MS1 ion current (Schwan-

häusser et al., 2011; Wühr et al., 2014). mRNA levels were

measured across 18 time points starting from the unfertilized

egg to stage 33, while protein abundance levels were measured

at 6 key stages (NF 2, 5, 9, 12, 23, 33). RNA level was further

measured in two distinct ways: polyadenylated RNA enrichment

and ribosomal RNA depletion. mRNA was extracted using stan-

dard protocols with bacterial sequence spike-ins for quality con-

trol and normalization. Our primary dataset is composed of

27,877 mRNA profiles and 6,509 protein profiles, which overlap

6,435 gene products (Figure 1B). The overlap is reduced to 5,960

if we use only peptides that uniquely match to a single predicted

protein. In addition, we reanalyzed our published (Wühr et al.,

2014) egg protein data against the present reference set, result-

ing in concentration (nM) data for 9,728 proteins (Table S1). This

is fewer than in the original publication because here we only

used unique peptides. On the basis of overall abundance distri-

bution (Figure S1A), we estimate that proteins missing from our

data are typically present at <10 nM.

mRNA Measurements Are Consistent with Those

Previously Published

We compared the mRNA time series reported here with a micro-

array study across 14 stages previously validated and published

by us (Yanai et al., 2011). A total of 7,806 transcripts were

matched between the microarray and the RNA-seq datasets.

The median Pearson correlation coefficient among these tran-

scripts is 0.89, and the median cosine distance is 0.026 (a mea-

sure of similarity where zero is coincident and 1 is the most

discordant), which suggests confidently reproduced expression

profiles. The left panel of Figure 1C presents a histogram of

cosine distances between previously published mRNA abun-

dance time courses and those measured in this study. The right

panel provides examples of genes at different levels of

agreement: chordin (CHRD: 0.06, near median), tenascin (TNN:

0.008, in lowest 5%), and secernin (SCRN2: 0.3, highest 5%).

As we previously showed, some of the discordance in biological

repeats is explained by heterochronic developmental timing,

i.e., genes that preserve the general expression pattern but
ier Inc.
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Figure 2. Allo-Alleles Are Concordant in Both

Protein and mRNA Expression

(A) Peptides with a single amino acid difference (red)

used to distinguish the allo-alleles.

(B) mRNA and protein expression in allo-alleles of

DAPL1.

(C) Histogram of cosine distance over temporal

expression in 164 allo-allele pairs of proteins (right) and

630 pairs of mRNA (left). Median cosine distances are

0.006 and 0.04, respectively. Median Pearson corre-

lations are 0.94 and 0.85, respectively. The cosine

distance between protein and mRNA pair of DAPL1

profiles is 0.004 and 0.03, respectively, exemplifying

the median discordance as shown by colored triangle

positions. Gray histograms show the baseline distri-

bution obtained by randomly re-matching allo-alleles.

(D) Scatter plot of cumulative protein concentration for

allo-alleles. The overall rank correlation between allo-

alleles is 0.50.
show a shift in the onset of expression among different clutches

of the same species (Yanai et al., 2011).

Protein Measurements Are Also Reliable

We compiled previously published western blots for 35 pro-

teins displaying distinct patterns during the course of develop-

ment and compared these with the quantitative data obtained

by MS. Overall, our data agree very well with established

information on protein dynamics (Figure S1C; Table S1).

Figure 1D shows a histogram of cosine distances between

previously published protein abundance changes and changes

measured in this study for those proteins (left); examples

of three protein dynamics patterns quantified via western

blot and multiplexed proteomics with representative cosine

distances (right). The corresponding protein distances are

color coded. Three examples are shown: ITLN1 (red), which

agrees very well between the two methods and has a cosine

value of 0.005; LIN28A (magenta), which is at the median

cosine distance (0.03); and XNF7 (khaki), which shows the

lowest level of agreement between the two methods (cosine

distance 0.15).

Absolute Abundance of mRNA and Protein

In addition to relative changes, we estimated absolute mRNA

concentration by dividing the total messenger RNA abundance

in the embryo proportionally to fragment per kilobase million

(FPKM) counts. We estimate protein concentration on the basis

of MS1 ion current prorated to the isobarically labeled fractions

(Schwanhäusser et al., 2011, Wühr et al., 2014). The Pearson

correlation between previously published protein concentration

and normalized ion current is 0.92 (Figure S1B).
Developmental Cell 35, 383–3
Allo-Alleles at the Protein and mRNA
Level Show No Sign of Sub-
functionalization
The whole X. laevis genome was duplicated

about 50 MYa—as a result, many genes

have a close paralog referred to as the

‘‘homeolog’’ or ‘‘allo-allele.’’ Single gene du-

plications as well as whole genome duplica-

tions have a special place in evolutionary

theory, where it is asserted that they provide
a way for new functions to arise through subfunctionalization

(Barton et al., 2007; Force et al., 1999). We have compared

protein expression patterns across 164 pairs of homeologs ob-

tained from Xenbase (Bowes et al., 2010), for which the

expression comparison is possible thanks to unique peptides

in each sequence (Figure 2A). Figure 2B shows a typical

example of a pair of allo-alleles of gene DAPL1. Protein is

shown in green and mRNA in blue. There is remarkable

concordance across homeologs: the median Pearson correla-

tion is 0.94 and the median cosine distance is 0.006. We

selected peptides that are both unique and differ by only a sin-

gle amino acid across the homeologs (see Figure 2A; Table

S1). On the basis of 90 such paired peptides, we again obtain

exceptional agreement in expression across homeologs with a

median Pearson correlation of 0.92—see the histogram of

cosine distances for 164 protein pairs (Figure 2C, right and

630 mRNA pairs (Figure 2C, left) where a colored arrow shows

the position of DAPL1. Gray histograms show the baseline dis-

tribution obtained by randomly matching pairs of allo-alleles to

one another. In this representative set of allo-alleles there is no

evidence for sub-functionalization. This apparent redundancy

in conjunction with the dosage difference (Figure 2D) is consis-

tent with observations in other systems of similar timescale

(Dean et al., 2008).

Abundant Proteins Are Stockpiled Rather Than
Produced on Demand
Most developmental studies have focused on genes expressed

at different times, places, and circumstances.What is not clear is
94, November 9, 2015 ª2015 Elsevier Inc. 385
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Figure 3. Most Proteins Change Little in Level from Egg through

Tailbud Stages

(A) K-means clustering of relative protein abundance into nine clusters using

cosine distance, labeled by the number of proteins that fall into each cluster

represented by the median curve. The thickness of the median line reflects the

number of proteins in the cluster.

(B) Histogram of protein dynamicity shows that most proteins do not change

much within the surveyed period. The insert shows representative examples:

(gray dashed line) TPI1 (Triosephosphate Isomerase 1) is among the flattest

possible with D = 2.0e-04. RPL11 (black) is at the median of the dynamicity

distribution (D = 0.8e-2). OCM2 (a calmodulin) and one of the isoforms of

hemoglobin zeta (HBZ), a form of alpha globin produced in the yolk sack of

mammals, are among the most dynamic (D = 0.571; 35 degrees difference)

proteins. Color code: red for dynamic, black for flat.

(C) Highly abundant proteins are generally flat, while low abundance proteins

are mostly dynamic. The density plot of absolute protein concentration in the

egg against dynamicity is shown.
whether these are exceptional cases or whether embryos are

constantly changing the mix of proteins in the embryo.

In X. laevis there is little new protein synthesis from fertilization

up to neurulation (Lee et al., 1984). Overall protein synthesis

does not change appreciably throughout these periods and re-

mains at approximately 100 ± 20 (SD) ng/hr or about 0.4%/hr

of the total non-yolk protein content. On the basis of these

measurements, at most an additional 9% of protein could be

synthesized in a 24-hr period. Proteins that appear stable

throughout our experiment are therefore likely to be made early

and not degraded, rather than maintaining a constant level

through high production rates and high turnover. Nevertheless,

bulk measurements bias the interpretation toward the most

abundant proteins. MS analysis allows us to see which proteins

are stable and which are dynamic. Figure 3A presents nine

main temporal trends of relative protein abundance via the me-

dians of clusters (K-means clustering using cosine distance;

also see Figure S2A). The thickness of the median line reflects

the number of proteins that fall into the respective cluster. The

two largest clusters (together 3,215 or �54%) contain proteins

whose abundances are essentially flat. Except for one dynamic

red cluster, all trends are either induction or degradation; the

more dynamic the trend, the fewer proteins that fall into that

category.

Many proteins change little in abundance during development

from the egg to hatching tadpole. To quantitate this behavior,
386 Developmental Cell 35, 383–394, November 9, 2015 ª2015 Elsev
we computed a parameter we call ‘‘dynamicity,’’ D. For each

pattern, D is defined as the cosine distance between a flat line

and the abundance curve. D is 0 for flat proteins and increases

with more active dynamics. Using the value of protein abun-

dance discussed above, we analyzed D as a function of

abundance. Figure 3B shows a histogram of D for detected pro-

teins. As is evident from this histogram, most proteins do not

changemuchwithin the surveyed period. The insert for Figure 3B

presents four examples: TPI1 (Triosephosphate Isomerase 1) is

among the flattest possible (D = 2.0e-04); ribosomal protein

RPL11, at the median of the distribution (D = 0.8e-2), which

represents less than 1 degree between vectors; an isoform of he-

moglobin zeta (HBZ), one of themost dynamic proteins (D= 0.57;

�35 degrees between vectors); and oncomodulin (OCM2),

which shows the same pattern.

Dynamicity Decreases with Abundance

Figure 3C shows a density plot of protein abundance against

D. This plot illustrates that high-abundance proteins are gener-

ally flat, while low-abundance proteins are mostly dynamic. In

particular, of proteins whose abundance is less than 100 nM,

75% have a dynamicity over 0.1. The Spearman correlation

between abundance and dynamicity is �0.55. We further

confirm this trend by subdividing the proteins into 10 quantile

bins by concentration in log10 scale and plotting the mean

dynamicity in each bin against the concentration (Figure S3B),

in which there is a clear monotonic trend. To ensure that this

trend is not an artifact of measuring the abundant protein levels

via many constituent peptides, while rare proteins are often

measured via only a single peptide, we present the same

plot using only one randomly chosen peptide for each pro-

tein—the result is very similar (Figure S3B).

Specific Examples. The general pattern, whereby abundant

proteins show very little change throughout development into

the hatching stage, makes intuitive sense in terms of the gen-

eral function of these proteins. Metabolic enzymes are one

group of abundant and flat proteins, e.g., complete sets of en-

zymes are present in the egg for glycolysis, TCA cycle, and

fatty acid metabolism. These abundant enzymes remain at

about the same level throughout early development. There is

no indication that the formation of tissues of high metabolic

demand, such as muscle and nerve, perturbs the pervasive

constancy of the levels of enzymes for central metabolism. A

few metabolic enzymes with tissue-specific isoforms, such

as the brain isoform of aldolase (ALDOC) and the liver iso-

form of carnitine palmitoyl transferase (CPT1A), are expressed

dynamically once the respective cell types are generated (Fig-

ure S2B). Only a small fraction of abundant proteins is gradually

degraded throughout gastrulation and neurulation. They re-

present a group composed largely of liver-specific proteins

found in the oocyte with no measurable mRNA counterpart

(Wühr et al., 2014). They are likely endocytosed from the blood-

stream, along with the yolk protein, vitellogenin, and gradually

degraded. Liver proteins such as albumin may have no function

in the oocyte; hence, it is not be surprising that they are

degraded and not resynthesized in early development. How-

ever, other proteins like glycogen phosphorylase have homo-

logs that are found in every cell type. The homologs behave

as expected: the abundance of the endogenous protein is

lower (muscle PYGM and brain PYGB at 0.3 and 1.3 mM,
ier Inc.
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Figure 4. Temporal Expression of Tissue-Specific Proteins

(A) Histogram of tissue specificity over all measured proteins with the lowest

and the highest 25% quantiles color coded. Sample nonspecific genes are

elongation factors and proteasome, while specific are myosin and creatine

kinase.

(B) Fraction of ‘‘non-specific/specific’’ proteins found in the two most repre-

sentative clusters.
respectively) than the putatively endocytosed protein (liver

PYGL 16.1 mM). It would be interesting to know how the degra-

dation machinery eliminates specifically the endocytosed pro-

tein. Finally, some of the most dynamic proteins are transcrip-

tion factors, such as NFKBIA (D = 0.29) and two isoforms of

Y-box protein YBX1 (D of 0.28 and 0.30).

Tissue-Specific Proteins Are Typically Produced on
Demand
The elaboration of complex tissues is expected to be accom-

panied by changes in the levels of proteins that pre-existed in

the egg and by the synthesis of new proteins. We would expect

tissue-specific proteins to be synthesized as the embryo rea-

ches the stage where there is frank expression of a suite of pro-

teins characteristic of that tissue type. Indeed, such examples

of the tissue-specific proteins are present: HAL (Histidine

ammonia-lyase) has three isoforms, one of which is predomi-

nantly (88% of total) present in stage 33 and is known to be

predominantly expressed in fetal liver. Neurogenesis genes

are exemplified by such genes as FABP7 (Fatty acid binding

protein 7) and OCM2 (Oncomodulin). HBZ (Zeta-globin) is a

polypeptide first synthesized in the yolk sac of the early

embryo. In order to analyze how tissue-specific gene expres-

sion is distributed in embryogenesis, we introduced a tissue

specificity index t that ranges between 0 (nonspecific) and

1 (highly specific, e.g., rhodopsins). This index is based on

the Gini index, which has been widely used in economics for

assessing income distribution in a population and has also

been used in biology for kinase specificity (Gujral et al.,

2014). Tissue-specific expression data are not available for

Xenopus. Instead we have used the data available for 96 tis-

sues and cell types in mouse, grouping together similar tissues,

e.g., different neuronal tissues. Figure 4A shows the histogram
Developm
of tissue specificity over all proteins we find in Xenopus em-

bryos with khaki and magenta areas showing the lowest and

the highest 25% quantile, respectively. The proteins in this

lowest quartile and the highest quartile are chosen to represent

nonspecific and tissue-specific genes, respectively, without

regard to which particular tissue. We further clustered all tem-

poral patterns of protein change using the cosine distance

measure to see how tissue specificity depends on temporal

pattern. Figure 4B shows the two most populated clusters: a

flat cluster of 1,260 proteins and a temporal increasing cluster

of 140. Each cluster is labeled with a fraction N/S representing

how many nonspecific (N) and tissue-specific (S) proteins are

found in each. There is a clear bias (Fisher’s test p value

1e-4) toward nonspecific proteins in the flat cluster and toward

tissue-specific proteins in the dynamic cluster.

We again find some tissue-specific proteins in the egg that

could be best explained as having been endocytosed with

vitellogenin (Wühr et al., 2014). As examples of other tissue-

specific proteins, we also see highly abundant epithelial

keratins KRT8 (7 mM) and KRT19 (5 mM) long before the

appearance of differentiated epithelial cells. Importantly, we

do not find any other tissue-specific intermediate filament pro-

teins that are abundant in differentiated tissues—neurofilament

protein (L, M, N), desmin, peripherin, and internexin—nor do

we find other widely accepted neuronal markers, such as

TAU or MAP2.

Evidence for Dynamic Posttranslational Modification in
Early Development
We made no special effort to examine posttranslational modi-

fication, yet we found about 1,000 spectra for modified pep-

tides (Table S1). Two special cases we briefly consider are

phosphorylation and acetylation. Eight proteins (e.g., aldolase

and nucleoplasmin) show both types of modifications. A

specific search for phosphopeptides quantifies 731 spectra

corresponding to about 225 proteins. Figure S4 shows the

result of K-means clustering into nine clusters. These clusters

are not mutually exclusive, since for many genes some pep-

tides are dephosphorylated while others are phosphorylated,

e.g., nucleolin has peptides in both the first and seventh clus-

ters, while nucleoplasmin (NPM2) has peptides in the seventh

and ninth clusters. One dramatic pattern is rapid dephosphor-

ylation between fertilization and pre-MBT—cluster 7. Two key

groups stand out among genes with dynamic phosphorylation

patterns: (1) 23 proteins involved in splicing machinery—

ACIN1, CWC27, CD2BP2, CLNS1A, GEMIN5, DHX16, KHSRP,

NSRP1, PABPN1, PAPOLA, PRPF3, RBM25, SF1, SF3A1,

SRSF4, SRSF11, SRRM1, TFIP11, THRAP3, TCERG1, SLU7,

ZCCHC8, and ZRANB—and (2) 15 proteins located in nucleoli

and involved in ribosomal biogenesis, namely ANP32A, DKC1,

ESF1, KRI1, NOLC1, NOP58, NPM1, NPM2, NUCKS1, NSUN2,

RRP12, LYAR, TOP2A, UTP18, and nucleolin (NCL). We also

observed acetylated peptides. There is a dramatic change in

acetylation of Lys27 in histone H3 around the MBT, when tran-

scription starts, consistent with studies of histone acetylation

in the regulation of transcription (Stasevich et al., 2014). Acet-

ylation is known to regulate metabolism in glycolysis, fatty acid

synthesis, urea cycle, and TCA cycle (Zhao et al., 2010). We

find four enzymes in glycolysis that each show a major
ental Cell 35, 383–394, November 9, 2015 ª2015 Elsevier Inc. 387
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Figure 5. Discordance of Temporal Pat-

terns in mRNA and Protein Expression

(A) Rank correlation (Spearman) within develop-

mental stage between protein and mRNA tem-

poral patterns for ribo-depleted and poly(A)-en-

riched methods of mRNA measurement.

(B) Histogram of Pearson correlation between

protein and mRNA temporal change patterns.

(C) Exemplary mRNA-protein time series. The or-

dinates represent the relative concentration of

protein to mRNA. Each plot shows the estimated

absolute concentration of mRNA and protein.

(D) Mutual information between the temporal

pattern of expression for mRNA and protein pre-

sented as co-clustering into three key trends. The

grayscale background reflects the number of

genes in each cluster. The left column illustrates

that a flat protein pattern may correspond to any

mRNA pattern, but if the protein is dynamic, it

usually follows respective change in the mRNA

concentration (see top of the right column for in-

duction). Criss-cross patterns of anti-correlation

are rarely observed (bottom of the right column).
acetylation increase at NF23, while their protein abundances

show no significant change. These proteins are present at

micromolar concentrations (ALDOA, ALDOC, LDHb, and

PGK1 at over 5 mM). Phosphoglucomutase is known to be

positively regulated by acetylation in the C terminus, and we

see a C-terminal acetylation, suggesting activation. A more

detailed study will require enrichment for peptides harboring

such modifications.

The Correspondence between mRNA and Protein in the
Developing Embryo
Generally, mRNA abundance is a poor predictor of protein

abundance in the embryo. We find that when analyzed stage

by stage, mRNA concentrations typically only modestly corre-

late with respective protein concentrations. This observation

is consistent with previous publications in bacteria, yeast,

and human cell culture (Smits et al., 2014; Vogel and Marcotte,

2012). In these studies agreement is quantified as rank correla-

tion between the abundance of mRNA and protein in a given

sample. When calculated this way—stage by stage separately

for six stages for which we measured both mRNA and protein

(Figure 5A)—the median Spearman correlation for each stage is

modest, with values similar to these previously reported for so-

matic cells (0.42). Poly(A)-enriched mRNA shows worse agree-

ment with protein than ribo-depleted (Figure 5A) in the early

stages, which are known to have a lot of poly(A) elongation

and shortening, while the agreement at later stages is some-

what better. These results correspond to our intuition of what

might be expected, since translational efficiency is affected

not only by the total level of mRNA message but also by poly-

adenylation status.

The Dynamics of Protein and RNA Are Very Poorly

Correlated

An alternative test of agreement between mRNA and protein is

to look at the correlation of changes across time points. In

agreement with previously published results, we found

mRNA-protein correlation to be poor in a majority of cases;

the mean Pearson correlation coefficient between mRNA and
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respective protein time series is close to zero (0.2) (see Fig-

ure 4B). To exemplify extremes in the correlation histogram,

we provide individual examples of mRNA and protein (Fig-

ure 4C). One explanation for the general lack of correlation is

given by examining the ratio of concentration between mRNA

and the respective protein. The rate of protein synthesis is

limited by the amount of mRNA available; when the level of

RNA is very low relative to the level of protein, fluctuations in

mRNA lead to small changes in translation rates that have little

impact on the protein level. Confirming this general trend, when

we divided all genes into 10 bins according to the mRNA/pro-

tein ratio (Figure S3A) we observed that genes that show higher

mRNA/protein ratios have better agreement between mRNA

and protein dynamics.

The Correspondence of RNA to Protein for Dynamic

Proteins

Coarse co-clustering mRNA and protein patterns into a 3-by-3

matrix reveals themutual information (Figure 5D). Generally, pro-

tein dynamics across development can be coarsely classified

into three categories: those that stay flat, those that disappear,

and those that accumulate. Themoredynamic theprotein pattern

(left to right in Figure 5D), the better the agreement is between

protein and mRNA patterns. However this mutual information

does not suggest a simple temporal correlation. The process of

protein synthesis takes time, so protein would be expected to

be synthesized and accumulated after a delay relative to mRNA

synthesis. In a related group of cases, mRNA levels spike and

fade away, while protein is accumulated (as in Figure 6A). We hy-

pothesize that a few of the truly anti-correlated patterns (when

mRNA is gradually disappearing as protein levels are increasing

at and after the MBT) are due to packaging of RNA in granules,

such as P-bodies (Hogan et al., 2008). Several RNA-binding pro-

teins are in this group: RBM7, RBM27, LARP1B, LARP7, KIN,

NOL12, and YTHDF1. These observations suggest the hypothe-

sis that when mRNA granules break up, mRNA simultaneously

becomes available for translation and degradation, leading to

the paradoxical behavior of RNA decline and protein accumula-

tion. Further, when selecting 720 geneswhere protein is dynamic
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Figure 6. Mass Action Kinetics Equation Results in a Plausible Model of Embryonic Protein Economy

(A) Robust fitting of solution to the equation dp/dt = KSr(t) � KDp(t) is done by searching a combination of synthesis and degradation rates minimizing the mean

square difference in protein level (see equation above the plot). The beige stripe shows the 95% confidence band for protein dynamics, which corresponds to the

95% confidence range in synthesis and degradation rates. This region includes actual protein measurements marked via green discs. The no-degradation model

is selected.

(B) Venn diagram of models of different complexity.

(C) Histograms of half-life (right) and synthesis rate (left). Half-life is given in hours, while synthesis rate is given in moles of protein synthesized per mole of mRNA

per hour. The green triangles indicate the medians.

(D) Histogram of Pearson correlation formodel-based versusmeasured protein expression for amodel assumingmedian synthesis andmedian degradation rates

while using the actual initial concentration.
and some maternal mRNA is present, we found no cases where

pre-MBT and post-MBT translation rates (estimated as the ratio

of protein increment over themRNA level) are sufficiently different

to suggest mRNA ‘‘masking,’’ i.e., translational control. Overall,

though mRNA and protein dynamics typically correlate poorly,

one can still gain information about likely protein behavior from

mRNA dynamics, and vice versa.

Mass Action Kinetics Equation Links RNA Changes to
Protein Changes
Although mRNA and protein dynamics poorly correlate, they

clearly contain mutual information. To test how well we can pre-

dict protein dynamics for a given mRNA dynamic, we modeled

embryonic protein turnover using mass action kinetics. Under

simple assumptions of temporal and spatial invariance of syn-

thesis and degradation, the expected change in protein levels

over time is given by dp/dt = KS r(t) � KD p(t), where p(t) is the

amount (moles) of protein per embryo, KS is the translation rate

(mole per mole per hour) for protein at time t, r(t) is the amount

of mRNA for the transcript encoding that protein, and KD is the

decay rate (hour�1) of the protein. For each protein, the parame-

ters KS and KD can be fit to themeasurements of r(t) and p(t) sub-
Developm
ject to the initial concentration fixed at p0 so as to minimize the

difference between the observed protein level pi at time ti and

the predicted protein level p(ti, KS, KD) on average over all

observed time points i (see Figure 6A):

min
fKS ;KD ;p0g

X
i

�
pðtijKS;KD;p0Þ � bpi

�2

To prevent overfitting, we also consider simplified models with

no synthesis (KS = 0): dp/dt = KDp(t); no degradation (KD = 0):

dp/dt = KS r(t); and a degenerate model dp/dt = 0, selecting

the best model according to a Bayesian information criterion.

The optimization search results in so-called MLE (maximum

likelihood estimate) values for parameters and also estimates

confidence intervals for these parameters (Supplemental Exper-

imental Procedures).
A Non-linear Model of Protein Dynamics with Up to
Three Parameters Fits Most of the Data
Most of the protein patterns fit the model well. The goodness

of fit is characterized by the cosine distance between the
ental Cell 35, 383–394, November 9, 2015 ª2015 Elsevier Inc. 389



measured and the predicted pattern as well as by adjusted R2

(Figure S5A). Consider one sample protein Calpain-8 (CAPN8)

presented in Figure 6A. The beige stripe shows a 95% confi-

dence band for protein dynamics, which corresponds to the

95% confidence range in synthesis and degradation rates. The

no-degradation model (KD = 0) is selected for this gene, and

the synthesis rate is estimated at a maximum constrained value

of KS = 1,200. Compared with the baseline model of predicting

protein from mRNA, we improve the Pearson correlation from

0.469 to 0.999. The cosine distance between actual quantitative

protein measurements marked via green discs and the predicted

protein level shown by the continuous green curve is 0.0028 (cf.

0.38 for mRNA-protein)—about 50% of all protein patterns are fit

better than that. Adjusted R2 for this fit is 0.70, which is worse

than about 75% of all fits.

There are several limitations to this approach. Naturally, the

accuracy with which we assign half-lives is limited by the obser-

vation period of our experiments, i.e., �50 hr. A flat protein is

easily explained by setting an initial protein concentration at

the right level, then assuming a zero degradation rate and a

zero synthesis rate, which simply disregards the mRNA profile.

That trivial model was selected for about 24% of the genes, all

of which were not fit well (R2 < 0.7). However, we get the most

information out of dynamic rather than static protein patterns.

About 18% of the protein patterns needed a complete three-

parameter model. Another 15% ignored protein synthesis and

only assigned a degradation rate, while the remaining 43%

assumed negligible degradation and only used synthesis rate

(Figure 6B).

When we look at the complete collection of RNA and protein

measurements, 80% of all well-fit (R2 > 0.7) models use synthe-

sis to explain the protein pattern, and three-quarters of these do

not use the degradation rate. Moreover, for about 60% of all pro-

teins, the half-life is estimated to be longer than the duration of

our experiment, suggesting that protein levels during this early

period are largely controlled by protein synthesis rather than

degradation.

This suggests that there is one broad class of proteins that are

deposited in the egg and do not need to be localized, while tis-

sue-specific proteins are localized by means of mRNA localiza-

tion or spatially defined mRNA expression and subsequent

protein synthesis.

Finally, there are very few genes for which the protein pattern is

dynamic but not regressed to mRNA via our simple model (me-

dian D = 0.004 for the degenerate model dp/dt = 0 genes, cf.

D = 0.072 for genes explained by full dp/dt = KSr(t) � KDp(t)

model) suggesting that additional layers of translational regula-

tion, or disjoint protein-mRNA localization are not very common

or not significant in the early embryo.

The Distribution of Synthesis and Degradation Rates Is
Physiologically Plausible
As a result of fitting the model to the data we obtain a wide

range of synthesis and degradation rates spanning four orders

of magnitude. Figure 6C shows histograms of half-life and syn-

thesis rate, where the half-life is given in hours, while synthesis

rate in moles of protein synthesized per moles of mRNA per

hour (see Table S1). The observed distribution is biologically

plausible. In particular it resembles the similar distribution ob-
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tained for mouse cell culture using metabolic labeling (Schwan-

häusser et al., 2011). We observe a median half-life of 43 hr

(over non-zero estimates) and median synthesis of 213 mol-

ecules of protein per molecule of mRNA per hour (cf. 40 hr

and 140 m/m/hr for mammalian cell culture, and synthesis rates

for sea urchin of 120 m/m/h at 15�C (Ben-Tabou de-Leon and

Davidson, 2009)). The long median half-life indicates that most

proteins are very stable during the period of our time series.

There is a general trend that rapidly synthesized proteins

have shorter half-life (Figure S5B) with a rank correlation of

�0.7. The 995 short-lived proteins (lower 25%) are strongly en-

riched (43 genes, multiple hypothesis adjusted p value of 3e-

20) for the cell cycle genes such as CHEK1, GMNN, kinases

PLK1, TLK1, CHEK1, AURKB and DNA-binding (52 genes, p

value 5e-15). The long-lived slow turnover proteins (2,209 esti-

mated half-life over 50 hr) include proteins such as metabolic

enzymes and tubulins and are strongly enriched (90 genes,

adjusted p value of 1e-29) for mitochondrial proteins (121

genes p value 5e-71) such as ATP synthases (e.g., ATP5J,

J2, C1, A1) and NADH dehydrogenases (e.g., NDUF A3, A6,

A9, B9).

mRNA Dynamics Can Be Used to Predict Protein

Dynamics

Having shown that three parameter models can typically

encode protein dynamics, we next asked if we can predict pro-

tein dynamics throughout development given the mRNA profile

and the initial protein concentration in the egg. As a proof-of-

principle we employ a simplified predictor, which uses the me-

dian rates of synthesis and degradation for all proteins. We use

this model to forecast the protein expression for the genes

where we had measured the protein patterns and compared

the predicted and measured patterns. The predictive power

of this model is best measured by a cosine distance between

predicted and measured temporal pattern of protein expres-

sion (Figure S5C). Figure 6D provides a histogram of Pearson

correlation for model-based versus measured protein expres-

sion for a model assuming median synthesis and median

degradation rates while using the measured initial concentra-

tion. The median correlation of 0.72 is a striking improvement

over simply using the mRNA dynamics as described above

(Figure 5B), which gave a correlation of 0.24. Furthermore,

the mRNA dynamics pattern can be used to improve the pre-

diction power. For example the median synthesis rate for pro-

teins whose mRNA is broadly degraded (see bottom mRNA

cluster of Figure 5D) is only 17 m/m/hr, while for proteins

whose mRNA is in the top cluster (sharply induced) the median

is 287 m/m/hr. By conditioning the synthesis rate on mRNA

pattern category we improved the modeling accuracy to 0.84

which could likely be further improved by considering more

than three categories.

Note that our method immediately allows us to make predic-

tions for over 3,000 additional proteins that could not be detected

in the developmental series but whose concentration in the egg

was measured. For all remaining genes that were not detected

in the egg we can assume the low expected 1 nM concentration

and still apply our method (see Supplemental Experimental Pro-

cedures). Yet another application of our approach is topredict the

protein dynamics in apart of theembryo if spatially resolved infor-

mation on mRNA levels is available (Junker et al., 2014). If the
ier Inc.



Figure 7. Embryonic Protein Economy

Embryonic protein economy expressed as gradual replacement of maternal by

zygotic protein, integrated over all proteins fitted by our model and extrapo-

lated to the whole embryo.
fraction of the embryonic volume where a given gene is ex-

pressedcanbeestimated from, e.g., in situ hybridization, thepro-

jected protein dynamics can be adjusted by pro-rating both the

initial protein level and the mRNA expression level. Such predic-

tionswould be valuable for planningmorpholino andRNAi exper-

iments (Heasman et al., 2000). The ability to calculate protein

levelswill be especially important for classes of genes that are ex-

pressed at low levels and are hard to detect in MS measure-

ments, such as transcription factors, receptors and secreted

signaling molecules.

Embryonic Protein Economy Expressed as Gradual

Replacement of Maternal by Zygotic Protein

As the embryo develops, maternally deposited proteins are

degraded and replaced by zygotic products. For each individual

protein where synthesis and degradation rates were recovered

from modeling, turnover dynamics can be obtained by solving

a simple system of equations where, at each point, total protein

concentration is factored into two components, maternal and

zygotic

dpN

dt
= KSrðtÞ � KDpNðtÞ

dpM

dt
= � KDpMðtÞ

subject to boundary conditions: pN(t0) = 0; pM(t0) = p0; where pN

is the concentration of zygotic protein product (which includes

protein translated from maternal mRNA stored in the egg) and

pM is the concentration of maternal protein product. This sys-

tem can be solved for pM(t) and pN(t) for each gene. The turn-

over can now be integrated over all proteins fitted by our model

and extrapolated to the whole embryo, as illustrated in Figure 7.

This turnover analysis suggests that (not counting yolk) most of

the protein composition of a complex highly differentiated or-

ganism 50 hr after fertilization was originally provided to it via

maternal deposit. Rather than synthesizing most of the building

material from scratch, degrading or secreting a lot of material,

the embryo makes careful use of what is provided maternally.
Developm
Presumably some of that protein is simply stockpiled until it

is useful, raising the question of exactly how the stockpiled pro-

tein is maintained in an inactive state and prevented from pre-

mature degradation. One well-studied example is yolk, which is

stored in granules; most of the maternal yolk supply persists

through the period of our experiment (Jorgensen et al., 2009).

Other proteins may similarly be compartmentalized, or main-

tained in an inactive state via posttranslational modification.

The question of how this is achieved, and how needed protein

is eventually released, opens up a number of research direc-

tions, including research on positional signaling and shuttling

mechanisms.

DISCUSSION

In situ hybridization (Gall and Pardue, 1969) enabled the revolu-

tionary developments ofDrosophila genetics to be applied at the

molecular level. Together with other techniques, such as RTPCR

and microarray analysis, we have a deeper understanding of

vertebrate and invertebrate development. Yet, it is still uncertain

how closely mRNA changes correlate with the activation of spe-

cific developmental processes. To address this, we need to take

on the daunting task of measuring both protein expression and

posttranslational modification. The optimal system in which to

do this is Xenopus, where synchrony is easy to achieve and

each egg has sufficient protein for deep analysis.

We have focused here on protein dynamics in the early embryo

and on comparing the dynamics of proteins with their mRNAs in

the early development of frog eggs from fertilization to just before

hatching (stage NF 33). We find that two kinds of protein patterns

dominate the early embryo: a stable set of maternally inherited

proteins, many of them abundant, and a very dynamic set of

lower abundance proteins, which most often strongly track

with RNA levels. Transcription factors are an example of this

latter class. Such proteins are characterized by rapid synthesis

changes driven by transcription and rapid protein degradation.

We were able to track proteins that show dramatic changes in

the posttranslational modifications, namely phosphorylation

and acetylation. We have made all this data available in an easily

accessible browser.

There are of course inherent limitations to our interpretations.

Bulk measurements limit us in ascribing changes to specific re-

gions of embryos. Relative protein quantitation is limited to 6,509

gene products; the total number of detected proteins is slightly

greater, about 7,000. By comparison with our own single-sample

proteomics (11,300 proteins in the egg [Wühr et al., 2014]),

we know that much depth is left to be explored. This difference

is mostly due to the significant increase in the duty cycle of

the Multinotch MS3 method that we employed for accurate

multiplexed quantification as compared with the label-free

MS2 approach we used previously. In the present study RNA

quantitation goes roughly three times deeper than protein.

Despite these limitations, the work presented here is by far

the deepest known exploration of relative protein changes in

embryogenesis.

Our data allowed us to resolve the apparent conflict between

protein measurements and mRNA measurements, using a

simple model for expression kinetics that assumes that the

observed median rates of protein synthesis and degradation
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apply to all proteins. Given the initial protein level and mRNA

kinetics, we can then make an accurate prediction of protein

levels throughout development. The excellent agreement be-

tween model and experiment indicates that the spread around

the mean values for protein synthesis and degradation mostly

represents measurement error. Using this model, appropriate

localized mRNA measurements could allow tissue- and region-

specific protein dynamics to be calculated, aiding in the interpre-

tation of morpholino experiments that could be confounded by

the presence of lingering maternal protein. However, any spe-

cific protein might have an atypical rate of synthesis (per mole

of RNA) or degradation. The most drastic modifications of the

composition of the egg take place in the least abundant proteins.

By stage 33, about 85% of the less abundant proteins are newly

synthesized, as compared with under 30% for the most

abundant proteins. Much of the change closely tracks RNA

expression and appears to be driven by transcription, rather

than translational control.

We designed our study of RNA around its intersection with

protein data, and we have therefore focused solely on coding

sequence. We have not yet attempted to distinguish among

splice variants. The rich dataset we have made available can

now be used to investigate these issues. Our rather limited

study of posttranslational modifications could also be greatly

expanded by enriching for modified peptides with antibody pre-

cipitation or chromatography.

Our protein data represent generally the most abundant

genes with coverage down to about the 10 nM range. This level

of analysis offers insight into the general strategy of protein

regulation during development from egg to hatching. The unfer-

tilized egg is provisioned with many materials that are main-

tained without much loss up to the feeding tadpole stage.

Because yolk is not consumed until after gastrulation (Jorgen-

sen et al., 2009; Vastag et al., 2011), the protein complement

of the embryonic cells must be similar to that in the earliest

cleavage divisions. The non-yolk protein made before the tail-

bud stage is very small compared with the non-yolk endowment

from the egg. To change its protein composition, the embryo

must thus either transcribe and translate new genes or degrade

or modify old proteins, but new transcription is very rare before

the MBT. Our data show that many proteins remain virtually un-

changed until the beating heart stage (2 days of development,

corresponding to about 10 days of mouse development). In

many cases an unchanging protein level stands in contrast to

large excursions of individual mRNA levels that have no known

consequence, raising the question of whether these are gratu-

itous and simply not selected against (Gerhart and Kirschner,

1997). It is not known whether these RNAs are being translated,

whether proteins are being degraded at a rate that would

compensate for their synthesis, or whether transcription is

highly localized. Unless we hypothesize precise cytoplasmic

localization of proteins in the egg or the existence of inter-

cellular shuttling mechanisms, we must assume that many pro-

tein deposits end up misplaced and are slowly degraded and

diluted without much effect.

There is an extensive literature speculating that in the embryo,

with its rapid nuclear proliferation and small nuclear to cyto-

plasm ratio, extensive protein regulation is occurring at the level

of translational and protein degradation. We found virtually no
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convincing examples of this, outside the cell cycle. Although

we can predict most protein data accurately from mRNA levels,

the outliers in our analysis may be the most interesting,

providing information on unusual types of translational control.

Our work relieves many concerns about the reported discor-

dance of RNA and protein expression seen in many publica-

tions, but provokes questions about which proteins are chosen

to be maternal and which are chosen to be actively regulated

by transcription. Finally, these studies should now focus our

attention on protein modification as a probable source of the

regulation of the many very stable proteins that are maternally

provisioned and maintained throughout the early stages of

development.

EXPERIMENTAL PROCEDURES

Xenopus laevis J-line embryos were collected according to NF system (Nieuw-

koop and Faber, 1994) at stages 0, 2, 6, 6.5, 7, 8, 8.5, 9, 10, 12, 14, 16, 18, 20,

23, 26, 30, and 33. Embryos were de-jellied in 2% cysteine (pH 7.8) and flash

frozen for later preparation. The research with X. laevis was performed under

the oversight of the Harvard Medical Area Institutional Animal Care and Use

Committee.

Total RNAwas isolated using TRIzol. Two distinct rounds of RNA sequencing

were performed: the first using poly(A) enrichment and the second using ribo-

somal RNA depletion. For both libraries, barcodes for multiplexing were added

during the amplification PCR. Epicenter FailSafe PCR enzymemix was used in

the amplification step. Libraries were run on High Sensitivity DNA chips on the

Bioanalyzer 1000. Size selection 350–600 bp was performed using the Pippin

Prep automated electrophoresis system from Sage Science with 2% agarose

cassettes. Samples were purified post size selection using MinElute columns

and run again on High Sensitivity DNA chips on the Bioanalyzer.

Sequencing was performed on Illumina HiSeq-1000 instruments. Paired-

end 100-bp reads from mRNA libraries were adaptor- and quality-trimmed

and filtered. Ribosomal reads were removed, and the remaining high-quality

paired reads were aligned to the reference set using Bowtie (Langmead

et al., 2009) with default parameters. RSEM package (Li and Dewey, 2011)

was used to determine abundance estimates for all transcripts, and those tran-

scripts having little read support were filtered out.

MS sample preparation and data analysis was performed essentially as pre-

viously described (Wühr et al., 2015). Embryos were lysed and yolk removed

via centrifugation (Wühr et al., 2014). Proteins were purified via methanol chlo-

roform extraction (Wessel and Flügge, 1984), digested with LysC, and labeled

with six-plex tandem mass tag (TMT). Liquid chromatography-mass spec-

trometry (LS-MS) experiments were performed on an Orbitrap Elite (Thermo

Fischer Scientific), using the MultiNotch MS3 method (McAlister et al.,

2014). For quantification, we only used peptides that matched to only one pro-

tein in the reference database. For the quantification of each protein, we used a

weighted sum of TMT signal/Fourier transform-noise intensities of its assigned

peptides.

For mapping of both mRNA and protein data (the short sequences for RNA-

seq and peptide-spectra matches for MS, respectively), we used as a main

reference X. laevis genome assembly (DoE JGI REF; v6r1: a total of 43,013

sequences) downloaded from Xenbase (Bowes et al., 2010).

Statistical Analysis and Modeling

Cosine similarity is a measure of similarity between two vectors of an inner

product space that measures the cosine of the angle between them.

We estimate protein concentration on the basis of MS1 ion current prorated

to the isobarically labeled fractions (Wühr et al., 2014). We estimated absolute

mRNA concentration by dividing the total messenger RNA abundance in the

embryo proportionally to FPKM counts.

MATHEMATICA was used to fit protein synthesis and degradation rates us-

ing the respective mRNA and protein concentration data. To prevent overfit-

ting, we used Bayesian information criterion to compare goodness of fit for

alternative models. MATHEMATICA notebook, which allows for interactive

exploration of the model setting for any gene, is available upon request.
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Wühr, M., Haas, W., McAlister, G.C., Peshkin, L., Rad, R., Kirschner, M.W.,

and Gygi, S.P. (2012). Accurate multiplexed proteomics at the MS2 level using

the complement reporter ion cluster. Anal. Chem. 84, 9214–9221.
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