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The large cells in early vertebrate development face an extreme physical

challenge in organizing their cytoplasm. For example, amphibian embryos

have to divide cytoplasm that spans hundreds of micrometres every 30 min

according to a precise geometry, a remarkable accomplishment given the

extreme difference between molecular and cellular scales in this system. How

do the biochemical reactions occurring at the molecular scale lead to this emer-

gent behaviour of the cell as a whole? Based on recent findings, we propose that

the centrosome plays a crucial role by initiating two autocatalytic reactions that

travel across the large cytoplasm as chemical waves. Waves of mitotic entry

and exit propagate out from centrosomes using the Cdk1 oscillator to coordin-

ate the timing of cell division. Waves of microtubule-stimulated microtubule

nucleation propagate out to assemble large asters that position spindles for

the following mitosis and establish cleavage plane geometry. By initiating

these chemical waves, the centrosome rapidly organizes the large cytoplasm

during the short embryonic cell cycle, which would be impossible using more

conventional mechanisms such as diffusion or nucleation by structural templat-

ing. Large embryo cells provide valuable insights to how cells control chemical

waves, which may be a general principle for cytoplasmic organization.
1. Introduction
Physical extremes in biology are interesting. They may reveal special mechanisms,

or underappreciated aspects of widespread mechanisms. Here, we address the

challenges faced by cells—frog zygotes and early blastomeres—that are extremely

large, but need to divide rapidly. Xenopus laevis eggs are 1.2 mm in diameter, and

they divide every 30 min. These numbers represent extraordinary challenges in

terms of spatial and temporal organization: How can a millimetre-scale cell be

spatially patterned by nanometre-scale molecules? How can a cell that would

take a protein hours to cross by diffusion alone generate the precisely controlled

timing required for cell cycle progression on a scale of minutes? We argue, based

on observations by others [1] and our group [2–4], that these spatial and temporal

organizational challenges may be solved by a common class of biophysical mech-

anism: chemical reaction waves, also called ‘trigger waves’ [1]. Furthermore, the

centrosome plays a key role in organizing these waves, and can be re-imagined as

a wave-initiating site.

A chemical reaction wave is a special case in kinetic organization of dissipa-

tive dynamical systems. It requires an excitable medium that locally amplifies a

chemical state so the state can propagate through the medium faster than diffu-

sion. Familiar examples include the Belousov–Zhabotinsky reaction [5], action

potential in neurons [6], calcium waves during fertilization [7] and cAMP waves

in a population of Dictyostelium cells [8,9]. Microtubule organization and cell

cycle progression are not normally considered as chemical waves, apart

from a few notable exceptions [10–13]. We will argue that this is an interesting

way to think about their spatio-temporal organization in frog zygotes, and that

chemical waves are perhaps the only way the huge zygote cell can self-organize
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in space and time. By extension, we believe chemical waves

may be much more prevalent inside cells than has been

thought, and may play important roles in organizing small

[14–16] as well as large cells.

The centrosome plays a special role in our hypothesis

as an initiator. Chemical waves can occur spontaneously in

excitable media, but in many cases a defined initiation site

provides a trigger or catalyst to initiate waves. As the wave

propagates outwards, it carries spatial information on the

location of the initiator to distant sites. In this way, we believe

that the centrosome informs the millimetre-sized frog egg

of the location of its centre. Chemical waves allow this spa-

tial information transfer to occur in minutes, even in the

millimetre-scale cytoplasm. It would take many hours by

diffusion alone, and might be impractical by microtubule

polymerization alone. The centrosome was defined in the

nineteenth century as the centre of the cell largely based on

observation of large embryo cells [17,18]. In the 1980s, its

role as a microtubule nucleation template was established

[19]. Since then it has been viewed as organizing cells primar-

ily by templating minus ends using g-tubulin complexes. The

centrosome has also been implicated in cell cycle control. We

propose that the centrosome coordinates space and time in

extremely large cells by initiating chemical waves of cell

cycle progression [1] and microtubule organization (this

review). We write to provoke discussion, with the warning

that some of our ideas are quite speculative. In the spirit of

this volume, we hope to generate feedback and new experi-

ments. Even if only partially correct, the idea that the

centrosome functions as a chemical wave initiator is an inter-

esting new way to think about spatio-temporal organization

of cells.
2. Chemical waves: the basics
Pattern formation by reaction–diffusion systems has foun-

dations in physics and chemical engineering, but has broad

implications to epidemiology, ecology and cell biology

(reviewed in [20]). It represents a general class of mathemat-

ical models that explains how patterns arise from collective

interactions occurring at much smaller scales. Turing

famously analysed a pair of interacting, diffusible chemical

species and derived the conditions that give rise to spon-

taneous emergence of apparently stable, periodic patterns,

providing a hypothetical conceptual basis for morphogenesis

long before any morphogens had been identified [21]. Here,

following the early works of Luther [22], Fisher [23] and

Kolmogorov & Petrovskii [24], we use the example of a

simple one component system that conveys the essence of

how reaction–diffusion systems generate transient waves

inside cells. Imagine that the cytoplasm exists anywhere

between the ‘on’ and ‘off’ state of some biochemical activity,

in our case, mitotic Cdk1 kinase activity and microtubule

assembly (figure 1a), and that this activity can vary over

time and space. The medium may support transient waves

if the following two requirements are met: (i) an autocatalytic

reaction exists which promotes the ‘on’ state and (ii) reactant

transport occurs, for example by molecular diffusion, but

other transport processes could substitute. A prototypical

example of an autocatalytic reaction is the logistic growth

model, in which a chemical species increases exponentially

and saturates. Starting with an initial concentration restricted
in space, growth (rate a (1/min)) in the absence of any trans-

port will predict this local region to increase (‘on’) while the

rest of the system remains ‘off’ (figure 1b). With a similar

initial condition, diffusion (D (mm2 min– 1)) alone will predict

the gradual homogenization of reactants (figure 1c). How-

ever, when growth and diffusion occur simultaneously and

satisfy quantitative conditions, the system gives rise to a

moving front that travels at a linear speed of order
ffiffiffiffiffiffiffiffiffiffi

4Da
p

(mm min�1) [22–24] (figure 1d ). As the front passes

through a given location, the state of the cytoplasm is con-

verted from the ‘off’ to the ‘on’ state. At the microscopic

level, this could be understood as a cascade of active mol-

ecules diffusing into adjacent space to induce more activity.

With more complex oscillatory reactions, this mechanism

may result in pulsing or spiral patterns. Importantly, this

phenomenon is observed in a continuous medium of arbi-

trary size and shape. To describe the dynamic patterns that

emerge in reaction–diffusion systems in cells, we will use

the term ‘chemical waves’ to emphasize the biochemical

nature of the cytoplasm.

Owing to their ability to rapidly communicate informa-

tion across space without a predefined blueprint, chemical

waves have great potential as the physical basis supporting

cellular physiology. This may be particularly useful for

large cells, where simple diffusion of signalling molecules

would be too slow. For example, a typical protein with a cyto-

plasmic diffusion coefficient of D ¼ �500 mm2 min 21 [25,26]

would take hours to travel from the centre to the periphery of

a frog egg with radius 600 mm (time t ¼ L2/6D ¼ 120 min).

By contrast, cell cycle waves traverse similar distances in min-

utes [1,27] and calcium waves in tens of seconds [7]. This can

be understood by assuming an autocatalytic reaction of rate

approximately 1 min21, resulting in a chemical wave of

speed
ffiffiffiffiffiffiffiffiffiffi

4Da
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 500� 1
p

¼ 45 (mm min�1), which will

travel the same distance in approximately 13 min. Despite

their rapid, adaptable properties, chemical waves possess

potential drawbacks. In addition to requiring particular

biochemistry and energy dissipation, excitable systems are

prone to spontaneous waves triggered by fluctuations in

local concentrations. This presents a challenge in adopting

chemical waves for highly coordinated physiological pro-

cesses such as cell division, since spontaneous initiation

would defeat the purpose of a spatial organizing system.

One strategy to mitigate this issue is to implement a strong,

nonlinear negative feedback into the system, which increases

the threshold for activation. Another non-exclusive strategy is

to robustly and quickly initiate the reaction at a controlled

location and allow the chemical wave to sweep through

large space before any spontaneous waves occur. In this scen-

ario, the initiator’s role is analogous to that of the conductor

in an orchestra who instructs the correct timing of biochem-

ical reactions with a common signal that spreads across the

cell. For both cell cycle progression and microtubule organiz-

ation, we argue that the centrosome acts as the initiator for

these chemical waves, albeit by poorly understood mechan-

isms. In the following sections, we discuss how cell cycle

progression and microtubule aster organization are coordin-

ated in the early frog embryo. To evaluate critically the

hypothesis that chemical waves emanating from centrosomes

form the physical basis of these phenomena, we ask whether

the systems exhibit two key characteristics of chemical

waves: (i) the cytoplasm supports autocatalytic reactions

and (ii) these reactions rapidly propagate activity through

http://rstb.royalsocietypublishing.org/
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Figure 1. Chemical waves initiated by the centrosome. (a) In our hypothesis, the centrosome (yellow circle) triggers two types of autocatalytic reactions that spread
radially outward through the cytoplasm. Cell cycle waves are mediated by mitotic Cdk1 feedback regulation, while aster growth is mediated by microtubule-
stimulated microtubule assembly. (b – d ) Requirements of the cytoplasm to support chemical waves. Curves show spatio-temporal dynamics of biochemical activity
according to the equations shown, which are non-unique examples of each situation. (b) Growth, or an autocatalytic reaction, with saturation results in local
amplification of activity. (c) Diffusion results in the homogenization of activity. (d ) When growth and diffusion are coupled, a propagating front or a chemical
wave, may be observed. Equations are shown for the one-dimensional case, but the long time-scale prediction of a propagating wavefront is remarkably
robust for higher dimensions, radial geometry and a range of initial conditions. Note that the logistic growth term in (d ) represents a broad class of reactions
with positive feedback, including the growth phase of excitable/bistable kinetics.
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space without dilution. We also ask if, and how, the

centrosome functions as an initiator.
3. Cell cycle progression as a chemical wave
The discovery of surface contraction waves (SCWs) in large

amphibian zygotes is perhaps the earliest observation of cell

cycle states propagating through the cytoplasm. In time-lapse

images of fertilized eggs made in the 1970s, Hara observed a

travelling wave of cortical contraction, visualized by move-

ment of pigment granules. These SCWs occurred just before

the first cleavage and proceeded as circular waves from the

animal to the vegetal pole [27,28] (figure 2a). SCWs consist of

two distinct waves: SCWa was the result of the relaxation

of the cortical tension, whereas the succeeding SCWb was a

stiffening of the cortex [30]. The two sets of waves occurred

periodically corresponding to the period of normal cleavage

cycle in developing embryos [27], suggesting that they were a

manifestation of cell cycle control of cytoskeletal behaviour

[27,31,32]. Subsequent research demonstrated that increase

and decrease in mitotic Cdk1 activity was responsible for the

onset of SCWa and SCWb [11,33], suggesting that SCWs are

mitotic entry and exit waves, respectively. SCWs that travel

across the millimetre cytoplasm in early amphibian embryos

are a dramatic example of cell cycle regulation in space.

Cell cycle waves have also been reported in other large cells
[34–36]. They fulfill one important criterion for chemical

waves in that they travel at near constant velocity without

dilution of activity, but these data alone do not establish that

the egg is an excitable medium for cell cycle progression.

What is the molecular basis of the cell cycle waves travelling

across large amphibian eggs? The biochemical clock that

generates sustained cycles of division is centred on cyclin

B-Cdk1 kinase activity (reviewed in [37,38]). This system oscil-

lates due to continuous synthesis and periodic destruction of

cyclin B, and harbours positive feedback of kinase activation

by the Cdc25C phosphatase and Wee1A/Myt1 kinase. The

potential for chemical waves of mitotic activation in this

system had been noted [11,39]. In a recent report, Chang and

Ferrell proved that waves can indeed occur by combining

in silico and in vitro experiments [1]. Using computer simu-

lations to model the spatial changes in cell cycle state, they

showed that a locally elevated activity of Cdk1 should pro-

pagate through a large cytoplasm as a chemical wave. The

propagation speed of such waves is predicted by the kinetics

of the cell cycle oscillator and diffusion of proteins and was esti-

mated to be 40–120 mm min21, which is in similar order with

the speed of SCWs at approximately 60 mm min21 observed

in vivo. Next, the propagation of cell cycle waves was reconsti-

tuted in a cell-free system by filling Teflon tubes with cycling

egg extract supplemented with sperm nuclei. To monitor

cell cycle progression, times of nuclear envelope assembly

and breakdown were recorded (figure 2b). After the first

http://rstb.royalsocietypublishing.org/
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( purple) mitotic Cdk1 activity coexist in the common cytoplasm. Centrosomes (yellow) reside in the animal half of the embryo until the eight-cell stage. Illustration
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synchronous cycle, the centre of the tube first started to enter

mitosis and this spread laterally across the entire tube at

approximately 60 mm min21 (figure 2c). Multiple pairs of mi-

totic entry and exit waves were observed in the same reaction

over time. Inhibition of Wee1A/Myt1 accelerated the wave

speeds in a dose-dependent manner underscoring the fact

that the strength of autocatalysis imposed on Cdk1 activity is

an important parameter for the speed of these waves. As the

extract contained multiple nuclei and centrosomes in these

experiments, it is difficult to draw conclusions on how their

presence affected the kinetics of cell cycle progression. How-

ever, the striking finding from Chang and Ferrell’s work

was that the cytoplasmic oscillator responsible for cell cycle

progression is sufficient to generate chemical waves that

temporally organize a large cytoplasm.

SCWs are initiated in the animal half of the zygote,

suggesting the presence of an initiation site. Accumulating

evidence suggests that the centrosome initiates the mitotic

entry wave. Injection of purified centrosomes accelerates

mitotic entry in frog and starfish oocytes [40,41] consistent

with an initiator role. Spindle pole bodies, the centrosome

equivalent in fission yeast, are known to promote entry into

mitosis [42–44]. In somatic cells, active cyclin B-Cdk1 concen-

trates on the centrosome in early prophase [45], and

centrosomal recruitment of the Cdc25C phosphatase may

be responsible for this initial activation [46]. The centrosome

could also act indirectly, by positioning the nucleus, which

then acts as the proximal trigger of mitotic entry waves.

The nucleus is thought to amplify mitotic Cdk1 activity

through compartmentalization [47,48]. In this view, the centro-

some and nucleus may together establish the perinuclear

region as a robust initiation site for the mitotic entry wave

[1]. Finally, we note that the nucleus and the animal half cyto-

plasm initiate SCW in the absence of centrosomes [27,40].

Therefore, it is likely that the additive effects of the centrosome,

nucleus and the animal half cytoplasm ensure the robust

initiation of the cell cycle in the animal half of the zygote.

In embryos [30] and egg extract [1], a mitotic exit

wave follows the mitotic entry wave and has a similar vel-

ocity (figure 2c). Whether mitotic exit is a self-sustaining
autocatalytic reaction that can generate waves, and if so

what determines their velocity, remain to be determined. Feed-

back between Cdk1 and the anaphase-promoting complex/

cyclosome (APC/C) through XErp1 [38,49,50] presents a

potential autocatalytic mechanism for a mitotic exit, but it is

not clear why this different reaction would propagate with

the same velocity as the entry wave. An alternative is that the

exit wave is a consequence of local changes in the cytoplasm

that follow the mitotic entry wave with a fixed time delay

[33], and therefore does not need to be autocatalytic or capable

of wave propagation on its own. In either model, the centro-

some may influence the kinetics. In human cells and early fly

embryos, cyclin B-GFP localizes on spindles and starts to

disappear first near the spindle poles in anaphase [51–53].

Thus, during mitotic exit, APC/C activity may be initiated at

centrosomes and then propagate outwards.
4. Radial organization of microtubules as a
chemical wave

The cell cycle wave discussed above presumably exists to

synchronize the cell cycle across a large cell, rather than trans-

mit positional information. We propose that microtubule

asters also grow by a chemical wave mechanism in large

embryo cells and, in this case, the goal is spatial organization

and correct positioning of cleavage planes. In frog eggs,

microtubule asters are small in mitosis due to high Cdk1

activity which limits microtubule growth [54,55] (figure 3b).

When Cdk1 activity decreases following fertilization, or ana-

phase onset, asters grow out rapidly from centrosomes. The

sperm aster grows to fill the whole cell (figure 3a), whereas

anaphase asters fill half the cell, since they do not interpene-

trate across the mid-plane (figure 3c,d ) [3,4,56]. The outer

edge of the aster expands at approximately 30 mm min21 in

Xenopus zygotes, and approximately 15 mm min21 in zebra-

fish first mitosis [2,3]. This rapid growth is essential for the

aster to fill the whole cell in time to position the centrosomes

for the following mitosis and also to trigger cleavage furrow

ingression following anaphase. Ingression initiates when, and

http://rstb.royalsocietypublishing.org/
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growth in large cells. (e) Conventional radial elongation model. Microtubules polymerize outward from centrosomes (yellow). Microtubule density at the aster
periphery decreases. ( f ) Nucleation away from the centrosome may occur on pre-existing microtubules or Golgi membranes (blue stacks). (g) Release and outward
transport. Minus ends are released from the centrosomal nucleation site and microtubules slide outward (red arrows). (h) Reaction – diffusion model of microtubule
aster expansion. vþ, v2 are rates of polymerization and depolymerization. fcat and fres are catastrophe and rescue frequencies of the microtubule plus end.
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where, the overlap zone between the two asters expands to

touch the cortex. Presumably, the aster–aster interaction

results from the collective action of microtubule-associated

proteins that specifically modulate the dynamics of antiparallel

bundles [4] and is beyond the scope of the chemical wave

model presented in this paper. In addition to growing rapidly,

we believe it is important that microtubules in the aster are

not spatially diluted as the asters grow. Initiating a furrow pre-

sumably requires signalling from some sufficient density of

microtubules, and images in frog and fish embryos suggest

that the aster retains an approximately constant microtubule

density at its periphery as it expands (figure 3d). Propagation

at a constant, rapid rate and lack of dilution during propagation

are two of the hallmarks of chemical waves.

The standard model for aster growth, which we call the

radial elongation model, is illustrated in figure 3e. Microtubules

are nucleated with their minus ends anchored at the centrosome,

and addition of GTP tubulin at plus ends promotes aster growth.

In this geometry, the density of microtubules must decrease with

radial distance r (density scales as approx. 1/r in two dimensions

or 1/r2 in three dimensions). However, immunofluorescence

images from frog embryos show that the microtubule network

at the aster periphery has a bushy appearance, and its density

appears to be constant, or even increase, with aster radius

(figure 3d). Movies from zebrafish provided a similar appear-

ance [3]. Given this microtubule distribution, it seems highly

unlikely that all microtubule minus ends are anchored at the cen-

trosome. We propose instead that microtubule nucleation occurs

within the growing aster away from the centrosome [56], and

that nucleation is stimulated by pre-existing microtubules

(figure 3f ). In support of this hypothesis, there is accumulat-

ing evidence for microtubule nucleation at non-centrosomal

sites associated with pre-existing microtubules. In the cortex of
higher plant cells, microtubules nucleate from g-tubulin ring

complexes attached to the side of other microtubules [57,58].

A similar self-amplifying microtubule nucleation process was

demonstrated in Xenopus egg extracts arrested in meiotic meta-

phase, by a poorly understood process requiring augmin/

HAUS complex [59]. The morphology of interphase aster

growth is consistent with parallel nucleation templated from

the walls of existing microtubules, but other hypotheses

cannot be excluded at present. For example, microtubules

might activate a kinase that locally promotes nucleation, as is

seen for Aurora B kinase activity in meiotic metaphase [60,61].

The Golgi apparatus nucleates microtubules in interphase

somatic cells [62–64], including neurons [65] and muscle cells

[66]. Pre-existing microtubule could accumulate Golgi mem-

branes and thus enhance nucleation. Whatever the molecular

mechanism, several observations suggest the interphase cyto-

plasm may be an excitable medium for microtubule assembly.

Electrically activated eggs, where no centrosome is introduced,

form asters [67,68] and furrow [69]. Enucleated, activated eggs

also form microtubule asters spontaneously [68]. Thus, microtu-

bules eventually form, and perhaps expand as asters, in the

absence of centrosomes or nuclei. Even following normal fertil-

ization, microtubules assemble at the vegetal cortex to promote

rotation of the cytoplasm relative to the cortex, and this popu-

lation can form spontaneously [70]. Thus, the interphase

cytoplasm does fulfill one property for an excitable medium:

spontaneous formation of microtubules when the initiation site

is not present.

Self-amplification of microtubules should prevent dilution

of microtubule density in radial geometries. An interesting

question is whether this has a kinetic contribution; in other

words, does this accelerate aster expansion? Though we note

that the rates of microtubule polymerization and that of aster

http://rstb.royalsocietypublishing.org/
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expansion are of comparable magnitude, microtubules in

interphase asters evidently depolymerize ([3] and K. Ishihara

& T.J. Mitchison 2013, unpublished data). In one model of

dynamic instability [71], the transitions of microtubule plus

ends between the growing and shrinking states have been

modelled as a biased random walk at long time-scales

[55,72]. The net polymerization rate (J ) is simply the weighted

average of the polymerization and depolymerization, where

the weighting depends on catastrophe and rescue rates

(figure 3h). Though the time-averaged net polymerization

rate J is thought to take a positive value in interphase [55], it

is considerably smaller than the instantaneous polymerization

rate of growing plus ends (vþ). This raises the question of how

the aster expands at a rate much faster than the net polymeriz-

ation rate J. The chemical wave hypothesis offers a potential

explanation to this apparent discrepancy. In the biased

random walk model, the net polymerization rate J contributes

through an advective term (also known as bias in direction),

whereas the random walk behaviour, characterized by the

coefficient D, is present in the diffusive term (figure 3h). It is

important to note that the diffusive term does not represent a

molecule diffusing through the cytoplasm, but rather the sto-

chastic nature of microtubule plus end positions. When a

reaction term corresponding to microtubule nucleation is intro-

duced, the coupling of diffusive process with growth

(nucleation rate alpha) predicts the overall aster expansion vel-

ocity V as V ¼ J þ
ffiffiffiffiffiffiffiffiffiffi

4Da
p

. Therefore, the chemical wave model

offers a quantitative explanation to how microtubule-stimu-

lated microtubule nucleation and dynamic instability may

synergistically contribute to the aster expansion rate. An aster

could expand to cell-spanning dimension in this model

even if J was negative, as it is in mitosis. D and/or a would

have to be correspondingly larger, so the net velocity of aster

expansion V was positive.

Applying the prototypical reaction–diffusion equation

above was more a conceptual starting point than a truly accur-

ate description of aster growth. Many questions remain

regarding the apparently simple process of how a large

embryo aster grows. Though centrosomes are obvious candi-

dates as initiators for microtubule waves, it is unknown

whether their capability for microtubule nucleation is locally

restricted or reaches longer distances [73,74]. Cytoplasmic

dynein is thought to exert outward force on astral microtu-

bules [3], so it is possible that minus ends are released and

glide outwards (figure 3g). We have so far assumed the

minus ends formed away from centrosomes are stable, pre-

sumably capped by g-tubulin ring complex [75,76] or the

CAMSAP/Patronin family of proteins [77–79], but they

may well be free to depolymerize. The reaction–diffusion

model presented above predicts that the aster expansion

rate increases indefinitely with nucleation rate, but this

seems physically implausible given that microtubules poly-

merize at finite speed. Reaction-telegraph equations that

combine the process of growth and persistent random walk

[80,81] may be better suited for predicting such physical

bounds. In any case, we believe that the key to understanding

aster growth lies both in the identification the key molecular

factors and rigorous evaluation of quantitative models under

the framework of chemical waves.

Finally, are the cell cycle and microtubule assembly

waves that propagate from centrosomes independent, or

are they coordinated in some way? During mitosis, high

Cdk1 activity regulates a complex network of microtubule-
associated proteins, promoting catastrophes and bounding

microtubule length [54,55]. Passage of the mitotic exit wave

removes this constraint, and may be sufficient to convert the

cytoplasm from non-excitable to excitable for microtubule

assembly. Alternatively, aster growth may require time-

dependent activation of molecular factors during interphase.

In either case, the microtubule polymerization wave depends

on prior passage of the mitotic exit wave. It might be pos-

sible to co-image the two waves to gain insights into their

coordination. In the early zebrafish embryo, actin-associated

vesicles change motility behaviour as the zygote proceeds

from mitosis to interphase, and particles closer to the centrosome

are affected earlier than more distal ones [3,32], suggesting that

they are responding to a mitotic exit wave emanating from cen-

trosomes. Importantly, this motility change wave precedes the

aster growth wave. In frog eggs, cell cycle waves travel at

approximately 60 mm min21, which is faster than the estimated

aster growth rate of approximately 30 mm min21. Therefore, a

plausible scenario is one in which a preceding mitotic exit

wave primes the cytoplasm to support aster growth.

We know much less about interphase aster disassembly

at the onset of mitosis. This also needs to occur rapidly,

and must relate in time to the mitotic entry wave. In some

movies, aster disassembly appears to propagate outwards

from the centrosome, suggesting disassembly might also

occur as a chemical wave initiated at centrosomes. Whether

this wave is the mitotic entry wave, or some downstream bio-

chemistry that depends on mitotic entry, is an interesting

question for future study.
5. Perspective and future directions
Over the past few decades, the centrosome’s role in cell cycle

control and microtubule organization has been well estab-

lished. Our proposal is to expand this view and reimagine

the centrosome as a chemical wave initiator in the context

of large dividing cells. Further investigation of cell cycle

waves calls for imaging the cell cycle in space and time at

the molecular level. The behaviours of fluorescent probes

such as cyclin B-GFP [51–53], Cdk1 activity FRET probes

[82], and cell cycle-dependent protein–protein interactions

[83] should be studied in relation to centrosome position

and microtubules. Using Xenopus egg extract, we have

recently developed a system that reconstitutes the growth

and interaction of large microtubule asters [4] and permits

high spatio-temporal imaging of microtubule dynamics

during aster growth. Candidate factors for microtubule

nucleation away from the centrosome can be perturbed by

immunodepletion. Another interesting direction of research

concerns the cross talk between the chemical waves of cell

cycle and microtubule. Observations made in cell-free sys-

tems should ultimately be tested in vivo. Microinjection and

live imaging performed on the large transparent zebrafish

embryos have already advanced our understanding of large

asters [3,84]. The complementary advantages offered by

Xenopus extracts and zebrafish zygotes will advance our

understanding of cell cycle waves and aster growth. Further-

more, it is tempting to speculate whether centrosomes initiate

other kinds of chemical waves [73,74].

Chemical waves might be the only physically plausible way

for large cells to organize their cytoplasm rapidly. Are chemical

waves a special property of large cells, or is it an intrinsic

http://rstb.royalsocietypublishing.org/
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capability of the cellular cytoplasm that is underappreciated in

smaller cells? Increasing evidence suggests that cytoplasmic

patterning by reaction–diffusion mechanisms is widespread

in a variety of cells [85]. In the medium-sized Caenorhabditis
elegans embryo, cell polarity is thought arise from a diffusion–

advection–reaction mechanism [16]. Actin polymerization

waves are initiated at the cell periphery and underlie neutrophil

chemotaxis [15,86]. The membrane-bound MinCD proteins

oscillate between the poles in tiny bacterial cells [87,88], and

their spontaneous surface waves have recently been reconsti-

tuted in bulk solution [14,89]. The early Drosophila embryo has

been suggested to produce metachronous mitotic waves by

coupling biochemical and mechanical excitability [90]. In all
cases, localized initiation is a key design element that allows

spatial propagation of information by chemical waves. Studying

how large embryos divide with this renewed interest on the

centrosome as the initiator will help us understand how

chemical wave mechanisms are implemented and conserved

to support basic physiological functions across different cell

types and organisms.
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