
Deep Proteomics of the Xen
Current Biology 24, 1467–1475, July 7, 2014 ª2014 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2014.05.044
Article
opus laevis

Egg using an mRNA-Derived
Reference Database
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Summary

Background: Mass spectrometry-based proteomics enables
the global identification and quantification of proteins and
their posttranslational modifications in complex biological
samples. However, proteomic analysis requires a complete
and accurate reference set of proteins and is therefore largely
restricted to model organisms with sequenced genomes.
Results:Here, we demonstrate the feasibility of deep genome-
free proteomics by using a reference proteome derived from
heterogeneous mRNA data. We identify more than 11,000
proteins with 99% confidence from the unfertilized Xenopus
laevis egg and estimate protein abundancewith approximately
2-fold precision. Our reference database outperforms the pro-
visional gene models based on genomic DNA sequencing and
references generated by other methods. Surprisingly, we find
that many proteins in the egg lack mRNA support and that
many of these proteins are found in blood or liver, suggesting
that they are taken up from the blood plasma, together with
yolk, during oocyte growth andmaturation, potentially contrib-
uting to early embryogenesis.
Conclusion: To facilitate proteomics in nonmodel organisms,
wemake our platform available as an online resource that con-
verts heterogeneous mRNA data into a protein reference set.
Thus, we demonstrate the feasibility and power of genome-
free proteomics while shedding new light on embryogenesis
in vertebrates.
Introduction

Recent advancements in mass spectrometry (MS)-based
proteomics now enable global identification and quantification
for up to w10,000 proteins in a single experiment, along with
associated posttranslational modifications [1–3]. The capa-
bility to identify proteins and measure their expression levels
in an unbiased manner on a proteome-wide scale can revolu-
tionize many areas of biology. However, many of the most
interesting biological problems are best studied in nonstan-
dard organisms: limb regeneration in axolotl [4], red blood
cell development in ice fish [5], or craniofacial developmental
disorders in Darwin’s finches [6]. To understand how different
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processes evolved, it will be important to compare proteomic
composition and dynamics in species from diverse clades.
Unfortunately, proteomics is currently very difficult in organ-

isms without well-annotated genomes. In current approaches,
proteins are digested with proteases, and the peptides are
ionized, fragmented, and detected via MS/MS fragmentation
spectra. In principle, these spectra contain sufficient informa-
tion to deduce a peptide’s amino acid sequence. However, this
approach is only feasible for subsets of spectra with excep-
tional quality. The number of interpretable spectra is signifi-
cantly increased by matching MS/MS spectra with theoretical
spectra generated from all proteins encoded in the studied
species. This set should be both complete and accurate to
achieve maximum sensitivity and specificity. The paucity of
high-quality reference databases is the main reason that MS-
based proteomics is currently limited largely to species with
well-annotated gene models.
Despite the rapid decrease in sequencing costs, obtaining

genome-based protein reference sets for new organisms is
time intensive and expensive. Creating accurate gene models
for a new species relies on faithfully assembling a genome
from short-read sequencing data and training gene predictors.
Both processes are oftenmetwith bioinformatics and species-
specific challenges. For example, the size and polyploidy
of some species’ genome (e.g., lungfish, axolotl, or Amoebae
[7–9]) make sequencing challenging for the foreseeable future.
In contrast, deep coverage RNA sequencing (RNA-seq) is cost
effective, and protein-coding transcripts can be reconstructed
using established tools and published protocols for any spe-
cies [10]. Some attempts have been made to generate a pro-
tein reference database by six-frame translations of mRNA
[11, 12]. Unfortunately, the majority of the obtained protein
sequences are biologically irrelevant, unnecessarily increasing
the search space for spectral matching and therefore
decreasing sensitivity while increasing the need for computa-
tional time and resources.
One underexploited model for proteomic experiments is the

African clawed frog Xenopus laevis [13–16]. Large amounts of
material required for deep proteomic experiments (>100 mg of
protein) can be obtained easily from X. laevis samples but
would be very hard or impossible to obtain from other model
organisms (e.g., staged embryonic time series or undiluted,
metaphase-arrested cytoplasm called egg extract). However,
X. laevis has rarely been used for MS due to the lack of a
released genome, likely due to the difficulty associated with
sequencing quasitetraploid genomes [17].
Here, we demonstrate for the X. laevis egg that genome-free

proteomics is feasible at remarkable depth and that we can
extract biological insight from this proteomics data. For our
genome-free protein reference set, we combine multiple
sources of mRNA information and use knowledge of sequence
similarity to proteins from related species for reading frame
detection, frameshift correction, and annotation. In proteo-
mic experiments, our database outperforms alternative ap-
proaches and even the latest rounds of preliminary gene
models based on the unreleased genome. With more than
11,000 proteins identified with 99% confidence, this is by far
the deepest proteomic study on X. laevis and one of the
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Figure 1. MS Data Can Be Used to Evaluate Relative Reference Database

Quality

Spectra from a tryptic digest of yeast lysate were searched against the stan-

dard yeast protein database (Full DB). Shown are the number of total pep-

tide spectral matches (blue), unique peptides (orange), or proteins (black)

that were confidently identified. To simulate poor reference databases, we

removed half (Half DB) or three-quarters of proteins (Quarter DB) from the

reference database. The number of identified PSMs and unique peptides

scale approximately with the number of proteins in the database. To

test how the addition of nonsense sequences would affect the number of

identified peptides, we added randomized human proteins to the full yeast

database (Full DB + Nonsense). The numbers of peptides and proteins are

negatively affected. To simulate a reference database in which proteins

are fragmented, we divided at a random position every protein in the refer-

ence into two proteins. Whereas the number of identified peptides slightly

decreases, the number of identified proteins substantially increases.
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deepest analyses performed on any organism. By enumer-
ating thew11,000 proteins in the Xenopus egg and measuring
the concentration of each to approximately 2-fold precision,
we have produced a valuable resource for the Xenopus com-
munity. Lastly, we offer the means for researchers to upload
and convert mRNA data into a protein reference database for
their own proteomic experiments on any organism.

Results

Objective Evaluation of Protein Reference Databases with
Peptide Fragmentation Spectra

To construct the best possible reference database for prote-
omics, we sought a method to evaluate and compare different
reference versions objectively. We reasoned that for a given
set of peptide fragment spectra, the number of confidently
identified peptides is an objective measure of the quality of
that reference. To test this assumption, we collected spectra
from a trypsin-digested S. cerevisiae lysate and searched
them against a standard collection of all yeast proteins. We
chose yeast, the first sequenced eukaryote [18], because its
gene models are exceptionally well annotated. We filtered
the spectra, which were matched to peptides (peptide spec-
trum matches [PSMs]), to 0.5% false discovery rate (FDR) by
using the target decoy strategy [1, 19, 20]. Protein grouping
was performed with maximum parsimony, with an additional
filtering step to 1% FDR at the protein level [1, 21–23]. We
then modified the yeast reference set to simulate the effects
of searching spectra against low-quality references. First, we
randomly removed half or three-quarters of the yeast proteins
in the reference database. The number of PSMs, unique pep-
tides, and proteins approximately scales with the number of
proteins in the reference database (Figure 1). To test whether
irrelevant data would affect the number of identified peptides,
we next added shuffled human protein sequences to the yeast
reference. As expected, the number of identified peptides and
proteins is reduced due to the higher chance of false-positive
matches. To simulate a protein reference database with highly
fragmented proteins, we bisected each protein from the
reference at a random position. With this reference, the num-
ber of identified peptides slightly decreased, likely due to the
removal of tryptic peptides at the fragmentation site. However,
the number of identified apparent proteins increased substan-
tially (Figure 1) because some fragmented proteins were
identified once per fragment. To further verify peptide identifi-
cation as a benchmark for the protein reference set quality, we
searchedMS spectra obtained from a X. laevis sample against
the gene models from various species. As expected, the
number of identified peptides decreaseswith evolutionary dis-
tance, likely reflecting the lower number of exactly matched
peptides in the databases (Figure S1 available online). Thus,
we conclude that proteomic data can be used to evaluate
the relative quality of a reference protein data set. More specif-
ically, the number of identified peptides, but not the number of
identified proteins, can be used as an objective benchmark to
compare different reference sets.

Deriving an mRNA-Based Protein Reference Database
For proteomic experiments with X. laevis, we needed to obtain
a comprehensive, artifact-free reference protein database
without using a genome. To guide our approach, we evaluated
the success of each processing step by the number of identi-
fied peptides when searching our reference against MS/MS
data from tryptic peptides of a X. laevis egg lysate. With this in-
formation, we can evaluate alternative approaches while con-
structing the database and choose the best possible option to
improve our reference incrementally.
An overview of the process we used to generate our refer-

ence database, herein called proteomic reference from hetero-
geneous RNA omitting the genome (PHROG), is shown in
Figure 2. We combined information from publically available
mRNA data and our own RNA-seq data, which we collected
to study mRNA dynamics during early development. First,
we combined, cleaned, and repeat masked mRNA data from
four sources: two RNA-seq de novo assemblies, transcripts
from GenBank, and assembled contigs from the Xenopus
Gene Indices. We then clustered and assembled the
preprocessed transcripts by using parameters to maximize
assembly, minimize spurious transcript fusions, and collapse
homeoalleles that are present in the quasitetraploid X. laevis.
We compared the assembled transcripts in all six reading
frames by using BLASTX against proteins from six vertebrates
in order to reveal the most likely translation frame, allowing us
to bypass the introduction of large numbers of irrelevant pro-
tein sequences when using a six-frame translation. We also
used BLASTX alignments to detect and correct for frameshifts
that occurred due to sequencing errors. We then translated all
transcripts in the BLASTX-hinted frame without regard to start



Figure 2. Overview of the Steps for Constructing the High-Quality Protein Reference Set PHROG

Transcripts from four different sources were combined, trimmed and cleaned using SeqClean, masked using RepeatMasker, and clustered and assembled

using TGICL/CAP3. The assembled transcripts were aligned against a collection ofmodel vertebrate proteins using BLASTX. The results were used for iden-

tifying the correct translation frame, for frameshift correction (if appropriate), and for removing sequences without significant similarity to known proteins.

Once translated using BioPerl, the longest peptide for each protein is identified, and the ends are trimmed to match tryptic peptides. The collection is pro-

cessed to remove 100% redundant proteins using CD-HIT, and gene symbols are assigned to the remaining members using the reciprocal or single best

BLAST hit against human proteins. The numbers indicate the numbers of transcripts or proteins in each group.
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and stop codons, ignoring translations from transcripts with a
BLASTX E value > 1 3 1025 as we hardly ever detected
peptides from proteins with the indicated threshold (Figures
S2A and S2B). This hinted translation and filtering method
significantly outperformed alternative translation attempts
(Table S1A). To determine whether hidden or never-before-
seen proteins might be present in these removed transcripts,
we used bona fide protein-coding transcripts as an initial
training set and used the hidden Markov model (HMM)-based
translationmethod. Adding these trained translations back did
not increase our peptide discovery numbers (Table S1A). Next,
the translated sequences’ N termini and C termini were
trimmed to remove sequence ends that were either upstream
or downstream of start and stop codons or that would produce
fractions of tryptic peptides and therefore could not be de-
tected via standard MS searches. The removal of invalid se-
quences from the database increased the number of identified
peptides (Table S1B). After eliminating redundancies, our final



Table 1. Comparison of Different Reference Databases

X. tropicalis

Gene Models

X. laevis

Xenbase

X. laevis Gene

Models PHROG

PHROG + X. laevis

Gene Models

PHROG

Six-Frame

PHROG RNA-Seq

Only

Proteins in database 43,455 34,178 44,159 79,214 123,373 610,557 71,716

Amino acid in database 22,546,772 14,676,179 15,683,803 25,605,893 41,289,696 76,509,919 24,281,510

PSMs 9,300 16,142 17,354 18,867 19,030 17,564 17,156

Unique peptides identified 7,847 13,381 14,531 15,894 16,043 14,791 14,510

Proteins identified 1,850 2,505 2,969 3,130 3,176 3,098 2,923

Comparison of different reference databases. We evaluated the performance of the different reference databases by testing against a tryptic-digested

X. laevis egg lysate.
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database PHROG contained 79,214 proteins (Figure 2). Finally,
to facilitate interpretation of identified protein sequences, we
assigned protein names and gene symbols by using a modi-
fied reciprocal best-BLAST-hit approach based on a target
reference of curated human proteins. A summary of the
composition of our database and its performance in a proteo-
mic experiment compared to alternative reference sets is
shown in Table 1. Judging by the number of identified pep-
tides, via MS, our database outperforms the protein reference
from Xenbase, the gene models from X. tropicalis, a six-frame
translated database, and even the gene models from the unre-
leased genome assembly version 7.0 (kindly provided by Dan
Rokhsar). One alternative to PHROG is using a better-anno-
tated reference set from a related species (e.g., X. tropicalis).
However, when using MS, a single amino acid mismatch
makes it impossible to identify a peptide. By using the
X. laevis published proteins from Xenbase, we identify
w70% more peptides compared to the X. tropicalis reference
(Table 1). The preliminary gene models provide a significant
improvement for peptide identification over previously known
proteins. Surprisingly, even with the latest assembly of the
genome, our mRNA-based approach identifies w10% more
peptides. When we combine PHROG with the preliminary
gene models as protein reference, we only identify an addi-
tional w1% of peptides compared to using PHROG alone.
The PHROG six-frame translated reference database is much
larger than all other databases and identifies w10% fewer
peptides compared to PHROG, likely because of additional
false-positive hits with irrelevant database entries, which hurts
sensitivity (Table S2).

One major advantage of our approach is that we combine
mRNA information from various sources, thereby maximizing
coverage. Besides our own RNA-seq data, we used publicly
available mRNA sources for X. laevis, including expressed
sequence tags, which are available for many nonstandard
model organisms in large quantities [24]. To demonstrate that
themRNA-based proteomics approach is also feasiblewithout
public mRNA data, we created a reference relying only on our
own RNA-seq data. This database identifies 90% of peptides
that thePHROG identifies andapproximately the samenumber
of peptides as the X. laevis preliminary gene models (Table 1).

Deep Genome-Free Proteomics Demonstrated on the
X. laevis Egg

To demonstrate the power of the genome-free proteomics
approach, we determined the proteomic content of the meta-
phase-arrested X. laevis egg. To obtain the deepest possible
coverage, we digested the proteins with both LysC and trypsin
or with LysC alone, fractionated each sample with a medium
pH reverse-phase column, and analyzed the fractions with
liquid chromatography followed by MS (LC-MS). The acquired
spectra were searched against our PHROG reference set, the
preliminary gene models, and Xenbase protein database for
comparison. The results are summarized in Figure 3. By using
Xenbase’s GenBank proteins known at the time of this writing,
we identified 97,999 unique peptides. With the X. laevis 7.0
gene models, we identified 26% more peptides. With our
PHROG reference, we identified 143,476 unique peptides, an
increase of 46% over Xenbase. When we matched these pep-
tides to the minimal number of proteins and filtered to 1% FDR
on the protein level, we identified 6,455 proteins fromXenbase,
9,720 proteins with the genome, and 11,103 proteins from
PHROG (Figure 3B). Unexpectedly, the relative increase of
proteins when comparing PHROG to Xenbase is larger than
the relative increase in unique peptides. We believe that this
is mostly due to an overrepresentation of the highest-abun-
dant proteins in Xenbase (i.e., the proteins for which most
MS/MS spectra will be collected) (Figure S3). In contrast,
PHROG seems to allow us to identify many lower-abundant
proteins, which would be missed with the Xenbase reference
set. Furthermore, PHROG might identify multiple splice forms
or proteins with slightly different sequences (e.g., alloaleles),
which may be missing in Xenbase. Importantly, the numbers
obtained with the very stringent filtering criteria used here indi-
cate that this study is among the deepest proteomic analyses
ever performed on any species.

Estimation of the Concentration of Individual Proteins in
the X. laevis Egg

Beyond providing a comprehensive list of identified proteins,
we also wanted to estimate each protein’s concentration.
The difficult-to-predict ionization efficiency of peptides pre-
vents us from directly measuring absolute protein abundance
via MS. However, we can estimate each protein’s concentra-
tion by summing up the ion current in the MS1 spectrum for
all peptides of a protein and normalizing by the number of
theoretical tryptic and LysC peptides [25]. We collected pub-
lished concentrations for 50 proteins in Xenopus egg extract
from the literature (Table S3) and plotted the concentration
against the normalized ion current (Figure 4A). The detected
proteins with published concentrations range over four orders
ofmagnitude from 30 mM for Nucleoplasmin [26] to 3 nM for the
MAPKKKMos [27]; from our panel, we only failed to detect the
20 pM Axin [28]. The Pearson correlation for published protein
concentration and normalized ion current in log-log space is
0.92 (Figure 4A). We confirmed that we did not overfit our
data by performing a 10-fold cross-validation, obtaining
essentially the same result (data not shown). Using this corre-
lation, we regressed the protein concentration for all detected
proteins (Figure 4B and Table S4). With this approach, the esti-
mated protein concentration differs on average by 1.9-fold
compared to the published protein concentrations. The histo-
gram for all estimated protein concentrations shows a median
of w30 nM (Figure 4B).



Figure 3. Comparison of Protein Reference Databases for the Fractionated

X. laevis Egg Sample

(A) Number of unique peptides identified with 0.5% FDR on the peptide

level. PHROG significantly outperforms the publically available proteins

from Xenbase and even the preliminary gene models from the 7.0 genome

assembly as reference database.

(B) Comparison of the number of proteins identified in the egg, with addi-

tional filtering to 1% FDR at the protein level and maximal parsimony.

The Proteome of the Xenopus laevis Egg
1471
As an additional resource, we provide the protein concen-
trations summed by their assigned human gene symbols
(Table S5). Several distinct Xenopus proteins were mapped
to the same human gene symbol. This is because similar but
distinct proteins in X. laevis matched the same human gene
during gene symbol assignment. The search results from
the preliminary genome indicate that we identified nearly
10,000 distinct X. laevis genes (gene models do not contain
splice variants).

For further validation, we asked whether subunits of stable
protein complexes tend to have similar predicted concentra-
tions. For ten stable complexes [29–31], we plotted the con-
centration of the subunits for each complex identified via the
assigned gene symbols. Remarkably, the complexes’ subunits
cluster around similar concentrations, as shown in Figure 4C.
At first glance, the anaphase promoting complex (APC) sub-
units are scattered relatively widely. However, some of the
APC subunits are known to be dimeric, whereas some are
monomeric [30]. Our precision is not good enough to separate
these populations, but the dimeric subunits tend to have
higher concentrations than the monomeric subunits (Fig-
ure 4C). Interestingly, when we perform a similar analysis
with components of metabolic pathways, the component’s
concentrations often vary by many orders of magnitude
(Figure 4D).

Relationship of mRNA Abundance and Protein Abundance
Given our previous work in Xenopus transcriptomics [32], we
sought to understand the relationship between mRNA and
protein abundance. Using standard methods to estimate the
abundance of the RNA-seq transcripts, we calculate the Pear-
son correlation of mRNA and protein abundance to be 0.32,
whereas the Spearman correlation is 0.30 (in log-log space;
Figure S4); these values are low compared to previous studies
in tissue culture cells [2, 25, 33]. Unlike tissue culture cells, the
X. laevis egg, which originates from the oocyte, emergeswith a
potentially different proteome and transcriptome after matura-
tion. Although the correlation of protein andmRNA abundance
is weak, we are more likely to observe the corresponding pro-
tein the more abundant the mRNA is (Figure 5A). We asked
whether there were systematically overrepresented classes
of genes that could only be seen via RNA-seq [34]. After map-
ping 4,675 gene symbols to our RNA-seq data, we found that
membrane proteins (2,013 gene symbols), proteins involved
in cell differentiation (894 gene symbols), transcription fac-
tors (316 gene symbols), and extracellular matrix proteins
(189 gene symbols) are significantly overrepresented in the
mRNA-only set (E values < 1 3 10210). Membrane proteins
are known to be harder to detect via MS than soluble proteins,
but we currently cannot distinguish whether membrane pro-
teins are overrepresented asRNAbecause ofMS sensitivity is-
sues or because they are not expressed in the egg and are
stockpiled for later translation. The same is true for the typi-
cally low-abundant transcription factors. For proteins used in
differentiation and for extracellular matrix proteins, it seems
more likely that the mRNA is present in the egg and will be ex-
pressed only during later stages of development.
With the current state of technology, RNA-seq is more sen-

sitive than protein detection via MS. Therefore, we were sur-
prised to find 368 proteins for which we could not find any
mRNA support. After running gene set enrichment analyses
with these proteins, we found that they were significantly en-
riched for blood plasma and liver proteins (Figure 5B and Table
S6). During oocyte maturation, the yolk protein vitellogenin is
synthesized in the liver and transported via the blood plasma
to the oocyte, where it is endocytosed [35, 36]. We conclude
that many proteins, besides vitellogenin, are also likely to be
taken up via endocytosis from the blood plasma during oogen-
esis. Metabolic labeling experiments in the 1960s noted a
small uptake of serum proteins in whole ovary but did not iden-
tify any of them [37]. It will be important to evaluate the intracel-
lular role of these proteins during embryonic development.

Discussion

We present here the deepest proteomic study ever performed
on X. laevis and one of the deepest performed on any
organism. We identified w11,000 proteins and estimated
each protein’s concentration, ranging more than four orders
of magnitude, with an approximate average error of 2-fold. It
might be possible to further improve protein concentration
predictions by combining normalized ion current with peptide
detectability prediction algorithms [38–40]. Our results will
be a highly valuable resource for the Xenopus egg extract
community for data mining, planning new experiments, and
complementing previous knowledge. For the development
community, it begins to define the dowry of the egg and
widens the opportunity for study of translational control, fertil-
ization, and the maternal-zygotic transition. The large amount
of material obtainable from Xenopus eggs and embryos,
coupled with this new resource, should encourage the use of
proteomics in development.
We started working on X. laevis proteomics in 2011 without

access to a genome. We wanted to take advantage of



Figure 4. Estimation of Protein Abundance in the Xenopus Egg

(A) Previously published protein concentrations for 49 proteins versus measured ion current in MS1 spectrum normalized to protein length. The Pearson

correlation is 0.92. On average, the predicted protein concentration is approximately 2-fold different from the reported protein concentration.

(B) Histogram of concentration for all identified proteins regressed from normalizedMS1 ion current. Median concentration of measured proteins is approx-

imately 30 nM.

(C) Estimated concentration for subunits of stable complexes is similar. For the APC/C, we additionally distinguished between subunits that were reported

to be dimeric (square) or monomeric (triangle) within the complex. Although our accuracy is not good enough to separate the two populations, the estimated

concentrations for dimeric subunits tend to be higher than those for monomeric subunits.

(D) Concentrations for enzymes of a metabolic pathway can vary widely. For each metabolic pathway, the predicted concentrations of its members are

plotted (based on the Kyoto Encyclopedia of Genes and Genomes).
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proteomics in this unique system and had to develop the
genome-freemethods presented in this study out of necessity.
Although this was intended as a preliminary effort, we were
surprised by how well the approach worked, especially
because we can compare it now to the early gene models. Ul-
timately, a high-quality genome with well-annotated gene
models will likely provide the highest-quality reference set
possible for RNA and protein analysis. However, reference
sets based on mRNA are much cheaper and faster to obtain
than gene models from genomic data. Based on this study,
we now believe that mRNA-derived proteomic data could
assist in building genemodels that are more accurate by using
identified peptide sequences to confirm exons. Recent studies
suggest that even for model organisms with well-annotated
genomes (e.g., rat or mouse), utilizing gene models based
on RNA-seq evidence increases the information that can be
gained from proteomic experiments [41, 42]. Furthermore,
the relative quality of gene models, generated with different
parameters, could be evaluated and potentially improved by
utilizing the number of identified peptides from a proteomic
experiment as a benchmark.
The proteomic data from the X. laevis egg illustrate the feasi-

bility of genome-free proteomics, which can be extended to
any nonstandard organism. One advantage of our methods



Figure 5. mRNA and Protein Abundance

(A) Histogram ofmRNA levels in the egg. mRNA for which the protein was also detected is colored blue. Orange indicates that onlymRNAwas detected. The

median of mRNA concentration is approximately 1,000-fold lower than themedian for protein abundance. Although we see only a weak correlation between

mRNA and protein abundance (0.32 Pearson correlation), the lower the mRNA concentration, the less likely we are to detect the corresponding protein.

(B) mRNA and protein were matched via assigned gene symbols. MS is able to identify approximately 60% of all gene symbols for which we could detect

mRNA. The proteins that we cannot detect via MS are overrepresented by transcription factors, proteins involved in differentiation, and transmembrane

proteins. On the contrary, for w350 gene symbols, we could identify only proteins, but not mRNA. This group is highly enriched for blood plasma and liver

proteins and was likely endocytosed during oocyte growth.
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is that mRNA data can be combined from heterogeneous
sources. For many species, multiple expressed sequence
tags and some full-length sequence information are available
(e.g., http://compbio.dfci.harvard.edu/tgi/tgipage.html) [24].
However, only relying on our RNA-seq data, genome-free pro-
teomics is possible. Approximately 10% of unique peptide
data were lost by only using RNA-seq data from embryonic
development; however, based on the findings in this paper,
one could likely minimize this loss by adding mRNA data
from the adult liver. We have integrated our series of pipeline
scripts into an online resource that creates a high-quality pro-
tein reference database from heterogeneous mRNA sources,
and that resource can be found at http://kirschner.med.
harvard.edu/tools/mz_ref_db.html.

Amino acid sequence information alone is not very informa-
tive. Rather, one needs to integrate that information with pre-
vious knowledge of proteins and their functions, e.g., which
proteins bind to form a complex, which proteins are part of a
metabolic pathway, or simply what the protein’s name from
which one can access the literature is. For nonstandard model
organisms, it is unlikely that there is much previous knowl-
edge of proteins from that species. However, by relating
sequence similarity to human proteins, one can assign pro-
teins to gene symbols and then interpret protein levels for
development. One unexpected finding in Xenopus is that
many proteins, which could be identified by MS, had no
observable mRNA in the egg.We found that these were almost
certainly proteins produced in the liver and endocytosed from
blood. We also found mRNAs without protein, and this sug-
gests that certain transcripts may be stockpiled in the egg
for translation at later stages of development.

This study demonstrates the power of genome-free prote-
omics, and our online tool increases the scope of proteomic
experiments. Knowledge of the level of protein expression
can offer new insight into molecular regulation and provides
a valuable resource for both biochemical and developmental
work in Xenopus.
Experimental Procedures

Sample Preparation for MS

The research with X. laevis was performed under the oversight of the Har-

vard Medical Area Institutional Animal Care and Use Committee. Female

X. laevis were induced with 700 U HCG. After 14 hr, eggs were harvested,

washed with 13 MMR, and dejellied with Cysteine (2% w/v) (pH 8.0). Sixty

eggs were flash frozen with liquid nitrogen. Eggs were lysed with 250 mM

sucrose, 1% NP40 substitute (Sigma), 5mM EDTA (pH 7.2), 1 Roche com-

plete mini tablet (EDTA-free), 20 mMHEPES (pH 7.2), 10 mMCombretastatin

4A, and 10 mM Cyochalasin D. For lysis, eggs were vortexed at maximum

speed for 10 s, pipetted ten times up and down with a 200 mL pipette tip,

incubated on ice for 10 min, and again vortexed for 10 s. Lysates were clar-

ified by centrifugation at 4,500 RCF at 4�C for 4 min in a tabletop centrifuge.

The cytoplasmic and lipid layers were mixed by gentle flicking and removed

from the pelleted yolk. To the lysate, HEPES (pH 7.2) was added to 100 mM,

and SDS was added to 2% (w/v). The sample was reduced with 5 mM DTT

for 20 min at 60�C and then alkylated with 15 mM NEM for 20 min at room

temperature (RT). Excess NEM was reacted with an additional 5 mM DTT

at RT. Proteins were isolated by methanol-chloroform precipitation [43].

The protein pellet was resuspended (w5 mg/mL) in 6 M Guanidine HCl in

50 mM HEPES (pH 8.5) and sonicated for 5 min. The sample was diluted

to 2 M Guanidine with 50 mM HEPES (pH 8.5) and digested with LysC

(Wako Chemicals) at 20 ng/mL at RT for 14 hr. Next, we diluted Guanidine

HCl with 50 mM HEPES (pH 8.5) to 0.5 M and digested further with

10 ng/mL of sequencing grade trypsin (Roche) at 37�C for 8 hr or LysC at

an additional 20 ng/mL at RT. Samples were subjected to C18 solid-phase

extraction (SPE) (SepPak, Waters) to desalt and isolate peptides. To reduce

sample complexity,w1mgLysC peptides and 0.5mg LysC/trypsin peptides

were resuspended in a 10 mM sodium carbonate buffer (pH 8.0) and then

fractionated by medium pH reverse-phase HPLC (Zorbax 300Extend-C18,

4.6 mm 3 250 mm column, Agilent) using an Acetonitrile gradient from

6%–31%. With a flow rate of 0.8 mL/min, fractions were collected into a

96-well plate every 38 s and then pooled into 24 fractions by combining

alternating wells from each column of the plate. Each fraction was dried

and resuspended in 20 mL of 1% phosphoric acid. Peptides from each frac-

tion were desalted and extracted oncemore with reverse-phase purification

[44], resuspended in 10 mL 1% formic acid. Approximately 4 mL per fraction

was analyzed by LC-MS.

Estimation of Protein Concentration

Published protein concentrations were collected from the literature (Table

S3). To obtain the MS1 ion current, we divided the MS1 precursor peptide

http://compbio.dfci.harvard.edu/tgi/tgipage.html
http://kirschner.med.harvard.edu/tools/mz_ref_db.html
http://kirschner.med.harvard.edu/tools/mz_ref_db.html
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intensities by the corresponding noise value (Thermo raw file). This signal to

noise ratio is a proxy for the number of charges in an Orbitrap analyzer [45].

To convert charges into ion current, we divided by the MS1 ion-injection

time. For each PSM, we recorded the maximum ion current during a pep-

tide’s elution. These ion currents were summed for all PSMs that matched

aprotein [25] andnormalized to thenumberof theoretically calculated tryptic

plus LysC peptides, with at least 7 amino acids and at most 25 amino acids

(missed cleavageswere not allowed for theoretical peptides). The published

protein namewas searched on theHumanGenomeOrganisation gene name

database to assign gene names (http://www.genenames.org/). If multiple

proteins that had been matched with the same gene symbol were found in

theMSdata set, theirMS1 ion currentswere summed.On occasion,multiple

gene symbolswere combined. For complete description ofwhichgene sym-

bols were combined and for further assumptions required for converting

published values into cytoplasmic concentrations, see Table S3.

PHROG Final Build

X. laevis transcripts fromGenBank,X. laevisGene Indices version 11 [24, 46],

and the de novo assemblies from the wild-type and J line RNA-seq data

were combined (ensuring unique identifiers), cleaned and trimmed using

SeqClean (http://compbio.dfci.harvard.edu/tgi/software/), and masked for

common repeat motifs using RepeatMasker (http://www.repeatmasker.

org) with its default libraries. The cleaned sequences were clustered with

TGICL [46], using default parameters (93% identity) but requiring a 100 bp

overlap, and assembled using CAP3 [47] with default parameters (92% iden-

tity). The contigs and singletons were searched against a small database

of model chordate proteins (H. sapiens, M. musculus, G. gallus, D. rerio,

X. tropicalis, and X. laevis) using BLASTX [48], and the full BLASTX reports

were parsed for strand, translation frame, expectation (E) value, bit score,

and alignment coordinates of both query and subject. Before translation,

the parsed data were processed to select transcripts that show possible

frame shifts, as determined by translation frames of the high-scoring pairs

(HSPs); the sequences of such transcripts were adjusted to compensate

for and to retain the translation frame of the best HSP. All transcripts

(corrected and not corrected) that showed conserved alignments (E % 1 3

1025) were fully translated, without regard to the best open reading frame

(ORF), in the hinted frame; those above this E value were discarded. The

translated proteins were subsequently processed as follows: (1) the longest

peptide from the full translation was retained; (2) protein ends were trimmed

to reflect potential trypsin-digested peptides; and (3) any resulting protein

fragments <7 amino acids were discarded. Finally, the remaining proteins

were processed by CD-HIT [49], with a threshold of 100%, to collapse the

group into a nonredundant data set. The alternative references were gener-

ated as follows: we performed the six-frame translation of the PHROG

according toEvans et al. [11] by using the transcripts after TGICL/CAP3 clus-

tering and assembly but prior to any filtering and/or trimming.We performed

the HMM-based translation of PHROG on the same transcripts by using

TransDecoder from the Trinity suite, translating on the positive strand only

with a minimum size of 24 amino acids. The best-guess translation was

performed using Virtual Ribosome [50], using parameters to translate on

any strand and return the longest ORF. All translations were also processed

by CD-HIT with a threshold of 100% [49].

Resources

The scripts and short protocol for usage, the protein database generation

pipeline, and the PHROG FASTA file are available as online resources at

http://kirschner.med.harvard.edu/tools/mz_ref_db.html.

Accession Numbers

The MS proteomics data have been deposited to the ProteomeXchange

Consortium [51] via the PRIDE partner repository with the data set identifier

PXD000926.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, and six tables and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2014.05.044.
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28. Lee, E., Salic, A., Krüger, R., Heinrich, R., and Kirschner, M.W. (2003).

The roles of APC and Axin derived from experimental and theoretical

analysis of the Wnt pathway. PLoS Biol. 1, E10.

29. Lawo, S., Bashkurov, M., Mullin, M., Ferreria, M.G., Kittler, R.,

Habermann, B., Tagliaferro, A., Poser, I., Hutchins, J.R., Hegemann,

B., et al. (2009). HAUS, the 8-subunit human Augmin complex, regulates

centrosome and spindle integrity. Curr. Biol. 19, 816–826.

30. Zhang, Z., Yang, J., Kong, E.H., Chao, W.C., Morris, E.P., da Fonseca,

P.C., and Barford, D. (2013). Recombinant expression, reconstitution

and structure of human anaphase-promoting complex (APC/C).

Biochem. J. 449, 365–371.

31. Ruepp, A., Waegele, B., Lechner, M., Brauner, B., Dunger-Kaltenbach,

I., Fobo, G., Frishman, G., Montrone, C., and Mewes, H.W. (2010).

CORUM: the comprehensive resource of mammalian protein com-

plexes—2009. Nucleic Acids Res. 38 (Database issue), D497–D501.

32. Yanai, I., Peshkin, L., Jorgensen, P., and Kirschner, M.W. (2011).

Mapping gene expression in two Xenopus species: evolutionary con-

straints and developmental flexibility. Dev. Cell 20, 483–496.

33. Tian, Q., Stepaniants, S.B., Mao, M., Weng, L., Feetham, M.C., Doyle,

M.J., Yi, E.C., Dai, H., Thorsson, V., Eng, J., et al. (2004). Integrated

genomic and proteomic analyses of gene expression in Mammalian

cells. Mol. Cell. Proteomics 3, 960–969.

34. Wang, J., Duncan, D., Shi, Z., and Zhang, B. (2013). WEB-based GEne

SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res.

41 (Web Server issue), W77–W83.

35. Opresko, L.K., and Karpf, R.A. (1987). Specific proteolysis regulates

fusion between endocytic compartments in Xenopus oocytes. Cell 51,

557–568.

36. Opresko, L., Wiley, H.S., and Wallace, R.A. (1980). Differential posten-

docytotic compartmentation in Xenopus oocytes is mediated by a spe-

cifically bound ligand. Cell 22, 47–57.

37. Wallace, R.A., and Jared, D.W. (1969). Studies on amphibian yolk. 8. The

estrogen-induced hepatic synthesis of a serum lipophosphoprotein

and its selective uptake by the ovary and trasformation into yolk platelet

proteins in Xenopus laevis. Dev. Biol. 19, 498–526.

38. Arike, L., Valgepea, K., Peil, L., Nahku, R., Adamberg, K., and Vilu, R.

(2012). Comparison and applications of label-free absolute proteome

quantification methods on Escherichia coli. J. Proteomics 75, 5437–

5448.

39. Vogel, C., and Marcotte, E.M. (2012). Label-free protein quantitation

using weighted spectral counting. Methods Mol. Biol. 893, 321–341.

40. Fusaro, V.A., Mani, D.R., Mesirov, J.P., and Carr, S.A. (2009). Prediction

of high-responding peptides for targeted protein assays by mass spec-

trometry. Nat. Biotechnol. 27, 190–198.

41. Low, T.Y., van Heesch, S., van den Toorn, H., Giansanti, P., Cristobal, A.,
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