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Abstract12

A long-standing observation is that in fast-growing cells, respiration rate declines with increasing growth rate and is13
compensated by an increase in fermentation, despite respiration being more efficient than fermentation. This apparent14
preference for fermentation even in the presence of oxygen is known as aerobic glycolysis, and occurs in bacteria,15
yeast, and cancer cells. Considerable work has focused on understanding the potential benefits that might justify16
this seemingly wasteful metabolic strategy, but its mechanistic basis remains unclear. Here we show that aerobic17
glycolysis results from the saturation of mitochondrial respiration and the decoupling of mitochondrial biogenesis18
from the production of other cellular components. Respiration rate is insensitive to acute perturbations of cellular19
energetic demands or nutrient supplies, and is explained simply by the amount of mitochondria per cell. Mitochondria20
accumulate at a nearly constant rate across different growth conditions, resulting in mitochondrial amount being largely21
determined by cell division time. In contrast, glucose uptake rate is not saturated, and is accurately predicted by22
the abundances and affinities of glucose transporters. Combining these models of glucose uptake and respiration23
provides a quantitative, mechanistic explanation for aerobic glycolysis. The robustness of specific respiration rate and24
mitochondrial biogenesis, paired with the flexibility of other bioenergetic and biosynthetic fluxes, may play a broad25
role in shaping eukaryotic cell metabolism.26

Introduction27

In eukaryotes, the cellular energy currency adenosine triphosphate (ATP) is primarily generated by mitochondrial28
respiration1. In this process, the electron transport chain (ETC) uses electrons derived from the oxidation of carbon29
sources to reduce oxygen. The biochemical basis of respiratory flux control has been intensely studied2–7, but30
despite many important insights, key questions regarding the control of oxygen consumption under physiological31
conditions are still unanswered8–11. Notably, the mechanism that underlies the variation in respiration rate with growth32
rate is unclear9,12–16. In both prokaryotes and eukaryotes, it has been observed that as growth rates increase, the33
rate of respiration decreases, and cells begin to ferment even in the presence of oxygen – a phenomenon known34
variously as aerobic glycolysis, overflow metabolism, the Crabtree effect, and the Warburg effect17–23. This behavior35
is counterintuitive because fermentation is approximately an order of magnitude less ATP-efficient than respiration1.36
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In this work, we investigated respiratory flux control in the budding yeast Saccharomyces cerevisiae. We found that37
acute perturbations of ATP-consuming processes and acute alteration of nutrient supply did not affect respiration rate.38
However, extended cultivation in different carbon sources led to differences in respiration rate which could be explained39
by differences in mitochondrial content. We show that both the observed homeostasis of respiration rate given a fixed40
amount of mitochondria and the scaling of respiration with mitochondrial volume are due to the saturation of the41
electron transport chain.42

To understand what underpins differences in mitochondrial content, and hence differences in respiration rate, we used43
live-cell imaging to measure the rate of mitochondrial biogenesis. We found that the rate at which mitochondrial mass44
accumulates remains similar across different growth conditions, even as cell division times vary considerably. When45
cell division times are longer, there is more time for mitochondria to accumulate, and thus the average amount of46
mitochondria per cell increases. Our findings lead to a saturation-accumulation-division (SAD) model of respiratory47
flux control: the ETC is saturated, mitochondria accumulate at a similar rate under different growth conditions, and48
mean mitochondrial amount is thus determined largely by division time. Combining the SAD model with a model49
of glucose uptake, based on the kinetics of glucose transporters and the external glucose concentration, quantitatively50
predicts the increase in fermentation and the decrease in respiration with increasing external glucose levels. The SAD51
model thus explains how the saturation of mitochondrial respiration and the robustness of mitochondrial biogenesis52
together give rise to aerobic glycolysis.53

Results54

Respiration rate remains constant regardless of changing ATP consumption or nutrient55
availability56

Given that the oxidation of carbon sources and the consumption of ATP are coupled to oxygen consumption, we sought57
to understand the extent to which respiration rate is set by ATP demand or nutrient supply. To test the extent to which58
ATP demand controls oxygen consumption rate (OCR), we acutely perturbed the rates of ATP-consuming processes in59
ethanol-grown cells, which rely exclusively on respiration to produce ATP (Fig. 1A). We performed these experiments60
within minutes to characterize the in situ biochemical properties of the mitochondrial machinery already present,61
rather than changes in respiration rate that might result from adaptation of the proteome. We inhibited processes which62
previous work suggests are significant ATP consumers24–27: we decreased the rate of translation (using anisomycin),63
inhibited microtubule assembly (using nocodazole) and actin polymerization (using Latrunculin A), and altered ion64
pumping (using high salt). These perturbations of ATP demand had the expected phenotypic effects (Fig. S1A-H) and65
significantly impacted growth rate and cellular ATP levels (Fig. 1B-C), but did not significantly affect cellular oxygen66
consumption rate (Fig. 1D). Thus, while perturbing key ATP-consuming processes affects overall cellular metabolic67
state, it does not significantly affect respiration rate.68

We next asked whether the external carbon supply determines the rate of respiration. It is well-known that extended69
growth in different carbon sources results in different rates of oxygen consumption (Fig. 1E and6,28,29). However, these70
differences are accompanied by changes in growth rate, mode of metabolism, carbohydrate and lipid composition, and71
proteome composition30–32. Hence, measurements of cells well-adapted to growth on different carbon sources cannot72
establish whether the external carbon supply at the moment of the measurement determines respiration rate. To address73
this, we cultivated cells in media containing either ethanol or glucose, then shifted them to media containing the other74
carbon source immediately before measuring respiration rate (Fig. 1F). Because the media switch and measurement75
occurred within minutes, factors including the proteome (i.e. metabolic enzyme content), macromolecular stores, and76
mitochondrial content remained approximately constant. To determine if energy metabolism was impacted, we used77
fluorescence lifetime imaging microscopy to measure intracellular levels of the key redox coenzymes NAD(P)H, and78
found they change upon carbon source shifts (Fig. S1I-J). However, respiration rate remains unchanged: cells grown79
on ethanol retain the same high OCR when transferred to glucose-containing media as when transferred to ethanol-80
containing media, and glucose-grown cells have a low OCR when transferred to either glucose- or ethanol-containing81
media (Fig. 1G). We measured OCR following nutrient shifts and found that it adapted over several hours, on the82
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timescale of growth and division (Fig. S2A-B).83

To evaluate the generality of this phenomenon, we grew cells in media containing one of five different carbon sources84
(glycerol, ethanol, galactose, sucrose, or glucose), rapidly shifted them to new media containing each of the carbon85
sources in turn, and measured their OCR. We observed the same general trend: the carbon source in which cells were86
grown for an extended period before the shift explained the vast majority of variation (91%) in post-shift respiration87
rates (Fig. 1H). Overall, these data (Fig. 1) demonstrate that acute perturbations of either energetic demand or carbon88
supply only minimally affect OCR, suggesting that respiration is saturated.89

Respiration scales with mitochondrial content90

We next sought to determine why cells grown in different carbon sources exhibit different respiration rates. We91
hypothesized that differences in mitochondrial content might contribute to this variation. Using confocal microscopy,92
we imaged mitochondrial networks in individual cells to reconstruct their 3-dimensional structure33 and calculate their93
volume (Fig. 2A). We measured the mean mitochondrial volume per cell and respiration rate under 17 conditions (the94
five carbon sources studied above as well as six glucose-limited cultures with and without amino acids). We observed a95
strong linear relationship between the rate of oxygen consumption per cell and the mean mitochondrial volume per cell96
(𝑅2 = 0.89; Fig. 2B). Each 1 µm3-increase in mitochondrial volume resulted in the same ~15 µM min−1 OD−1change97
in OCR, consistent with the hypothesis that each additional unit of mitochondrial volume contains the same metabolic98
enzymes, which operate at the same rate. To test the relationship between mitochondrial volume and metabolic enzyme99
content, we performed multiplexed proteomics of cells grown under each of the 17 conditions. We found that the total100
abundance of mitochondrial proteins was proportional to mean single-cell mitochondrial network volume (𝑅2 = 0.71101
and 𝑝 = 0.52, two-tailed 𝑡-test of the null hypothesis that the 𝑦-intercept is zero; Fig. 2C). Mitochondrial volume was102
highly correlated with the abundance of different groups of respiration-related enzymes (median 𝑅2 = 0.71; Fig. S3),103
indicating a constant addition of these enzymes per unit increase in mitochondrial volume.104

Protein and metabolite levels are consistent with electron transport chain saturation by NADH105

To determine which mitochondrial enzymes are saturated and thus control respiration rate, we investigated how the106
abundance of different functional groups of enzymes scaled with respiration rate. We reasoned that if OCR is controlled107
by a given functional group, then the amount of that group should not just be linearly related to OCR, but strictly108
proportional to OCR (such that OCR is zero in the absence of that group). We therefore performed linear regressions of109
OCR against the abundance of candidate groups, and identified those groups that had a nearly proportional relationship110
(i.e. a small absolute value of the regression 𝑦-intercept) and significant explanatory power (high 𝑅2) (Fig. S4A-B).111
For each regression, we tested the null hypothesis that the 𝑦-intercept was zero (i.e. not proportional) by bootstrap112
sampling.113

We examined the trend of respiration with respect to total abundance of mitochondrial proteins (Fig. 2D), and114
found a strong linear relationship, consistent with previous work9, but with a large negative 𝑦-intercept (𝑝 = 0.04),115
indicating that the mitochondrial proteome as a whole is not proportional to OCR. We next considered the enzymes116
of the tricarboxylic acid (TCA) cycle, which generate reducing equivalents that are used for respiration; OCR is117
not proportional to these enzymes either (𝑝 = 0.01, Fig. 2E). Recent work has suggested that in cancer cells,118
the malate-aspartate shuttle and the glycerol-3-phosphate shuttle set the flux of cytosolic reducing equivalents into119
mitochondria16. However, the fit of OCR against the abundance of shuttles in our data suggests that they do not control120
OCR in yeast (𝑝 < 0.01, Fig. 2F; and S4C). We further tested this hypothesis by knocking out the matrix-facing121
NADH dehydrogenase NDI1, required for oxidation of NADH transported into mitochondria by shuttles, and GUT2, a122
component of the glycerol-3-phosphate shuttle. Consistent with previous work5,34, we found that OCR did not change123
significantly (Fig. S5A). This result suggests that shuttles are not the bottleneck for respiration, though it does not124
rule out the possibility of compensatory re-wiring of redox metabolism in response to these knockouts. Finally, we125
considered the total abundance of electron transport chain (ETC) complexes, which we found to be proportional to126
OCR (𝑝 = 0.88; Fig. 2G). Many individual components of the ETC are similarly proportional to OCR (Fig. S4C).127
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If ETC abundance controls respiration rate, we would expect primary electron acceptors to be saturated by the species128
which donate electrons, which are primarily reduced nicotinamide adenine nucleotides (NADH). To test whether129
NADH is saturating, we investigated how OCR is impacted by alteration of NADH levels in live cells. We manipulated130
NADH levels in glucose-grown cells, which generate NADH via glyceraldehyde-3-phosphate (GAPDH), by titrating131
a GAPDH inhibitor (IAA). We compared OCR with NADH levels which we measured by mass spectrometry and by132
fluorescence lifetime imaging (Fig. 2E and Fig. S5B-E). We observed a relationship consistent with Michaelis-Menten133
kinetics, with a half-maximal rate obtained at 𝐾M = 2.6 ± 1.4 µM . This is far lower than the physiological NADH134
concentration of 112.2±4.8 µM , consistent with electron transport chain saturation by NADH. We find that respiration135
rate is similarly insensitive to perturbations of mitochondrial membrane potential: decreasing membrane potential with136
a protonophore did not increase respiration rate (Fig. S5F-H).137

Taken together, our data indicate that the ETC is saturated by NADH, leading to an insensitivity to perturbations of138
ATP demand and nutrient supply, and that ETC content is linearly related to mitochondrial volume. Hence, differences139
in respiration rate across different growth conditions are largely due to differences in mitochondrial volume (and thus140
ETC content).141

Mitochondrial content is largely controlled by division time142

We next asked how mitochondrial volume was controlled across the different carbon sources studied here. It has143
previously been proposed that nutrient supply-specific mitochondrial biogenesis controls the amount of mitochondria144
present under different growth conditions35–38.145

To test whether this was the case, we directly measured mitochondrial biogenesis rates in individual cells under146
different conditions using time-lapse confocal imaging (Fig. 3A). The increase in mitochondrial network volume147
was approximately linear in time during both the G1 phase of the cell cycle and over the course of budding, albeit148
with different slopes (Fig. 3B and Fig. S6A-C). We measured the rate of mitochondrial biogenesis during G1 and149
budding in the five carbon sources studied earlier, and calculated cell-cycle-averaged rates 𝑟 from estimates of G1150
vs. budding fraction (Fig. 3C and Fig. S6D). Surprisingly, mitochondrial biogenesis rates did not vary substantially151
across different conditions (coefficient of variation CV ≈ 0.2), while the variation in cell cycle times was considerably152
greater (CV ≈ 0.5). Furthermore, mitochondrial biogenesis rates were only weakly correlated with mean mitochondrial153
volume (Pearson’s 𝑟 = −0.40), while cell cycle times were strongly correlated (Pearson’s 𝑟 = −0.80). We sought to154
understand the regulation of mitochondrial volume using a simple mathematical model (Supplementary Note 1). In155
this model of single-cell mitochondrial volume dynamics, mitochondrial volume accumulates continuously over the156
duration of the cell cycle. Thus, the average mitochondrial volume per cell is approximately proportional to both the157
average mitochondrial biogenesis rate 𝑟 and the cell cycle time 𝑇 . To test this model, we used it to predict the average158
mitochondrial volume per cell using parameters estimated from single-cell microscopy of mitochondrial networks159
and bulk doubling time measurements. The predicted mitochondrial volumes were in good agreement with direct160
measurements of mean volumes (Fig. 3E). These results support an “accumulation-division” model of mitochondrial161
volume control, in which mitochondria continually accumulate over the course of the cell cycle such that longer162
times between successive divisions provide more time for mitochondria to accumulate, and hence greater average163
mitochondrial volumes per cell (Fig. 3F).164

Mitochondria are unique among organelles in that they maintain their own genome and gene expression machinery39;165
hence, we hypothesized that the accumulation-division model might apply specifically to them and not other organelles.166
To test this we investigated the extent to which the abundance of different organelles could be explained by differences in167
cell cycle times as predicted by the accumulation-division model. We quantified the total amount of protein in different168
organelles, including mitochondria, the nucleus, the endoplasmic reticulum and Golgi apparatus, as well as proteins in169
the cytoplasm and cell membrane, across different growth conditions. The normalized abundance of proteins in each170
of these non-mitochondrial locations was a weak function of division time (relative changes all < 20%, Fig. 3G). In171
contrast, the amount of mitochondrial proteins varies drastically (relative change = 59%): under the conditions studied172
here, the slowest-growing cells possess nearly twice as much mitochondrial protein as fast-growing cells.173

Taken together, our results are consistent with a saturation-accumulation-division (SAD) model that explains trends in174
respiration rate in fast-growing cells: (i) in each cell, respiration rate is set by the amount of mitochondria because175
respiration-associated machinery is saturated; (ii) because mitochondria accumulate over the course of the cell cycle,176
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mitochondrial amount per cell is largely determined by the time between successive divisions.177

The source of reducing equivalents for respiration is similar under fermenting and non-178
fermenting conditions179

The SAD model provides a simple explanation of respiratory flux control in which oxygen consumption rate varies180
smoothly with cell division time. However, prior work has shown that above a critical growth rate, glucose-grown181
yeast undergo a transition in energy metabolism and switch from non-fermentative to fermentative growth (i.e. begin to182
perform aerobic glycolysis)14,19. To understand how these observations can be reconciled with one another, we sought183
to test if mitochondria themselves undergo a metabolic transition as growth rate changes.184

We investigated the impact of growth rate on fluxes in central carbon metabolism using a series of glucose-limited185
cultures. The growth rates of these cultures increased monotonically with glucose concentration (Fig. 4A). We186
measured glucose consumption, ethanol production, and oxygen consumption rates, and, as expected, we observed187
ethanol production beyond the threshold glucose concentration of ~0.6 mM (Fig. 4B). To determine the contribution188
of different intramitochondrial fluxes to the observed respiration rate, we conducted parallel labeling experiments189
with 1,2-13C2-glucose or U-13C-glucose. We constructed a minimal model of glycolysis and the TCA cycle and190
performed 13C-metabolic flux analysis (MFA)40, which we constrained using metabolite labeling patterns and absolute191
extracellular fluxes (Fig. 4C). This analysis revealed two trends: firstly, the relative contribution of reducing equivalents192
produced by the TCA cycle is qualitatively similar across these conditions (Fig. 4D); secondly, full TCA cycle turning193
occurs under most of the glucose concentrations studied, and ceases only at the highest glucose concentrations (Fig.194
S7A-E). While ethanol production begins at a low glucose concentration (above ~0.6 mM), qualitative changes in TCA195
metabolism emerge only at a 10-fold higher glucose concentration (~5.6 mM). Thus, these tracing experiments show196
no evidence of a major transition in mitochondrial TCA cycle metabolism accompanying the onset of fermentation.197

Glycolysis and fermentation are not saturated198

To determine how yeast switch from non-fermentative to fermentative growth in the absence of a dramatic transition in199
mitochondrial metabolism, we next investigated the control of glycolysis and fermentation. Glycolysis produces ATP200
that supplies various energy-consuming cellular processes, and it produces the carbon and reducing equivalents con-201
sumed by fermentation and respiration. We inhibited microtubule polymerization (an energy-consuming process) using202
nocodazole or partially inhibited glycolysis using iodoacetic acid, and measured extracellular fluxes and growth rate.203
While OCR remained unchanged (Fig. 5A), growth rate, glucose consumption, and ethanol production all decreased204
dramatically (Fig. 5B-D). These acute perturbations indicate that unlike respiration, glycolysis and fermentation are205
not saturated: they can change in response to alterations of coupled fluxes41.206

To further investigate the control of these pathways, we examined the correlation between glucose consumption207
and ethanol production rates and the abundance of key enzymes (Fig. 5E), as measured by proteomics. Glucose208
consumption rate is not proportional (𝑦-int ≠ 0) to the abundance of glycolytic enzymes, including hexose transporters209
(HXT), phosphofructokinase (PFK), or glyceraldehyde-3-phosphate dehydrogenases (GAPDH) (Fig. 5F). In the case210
of fermentation, neither pyruvate decarboxylases (PDC) nor alcohol dehydrogenases (ADH) are proportional to ethanol211
production rate (Fig. 5G). These results again indicate that, unlike respiration, fermentation is not saturated. This212
is consistent with previous reports that many metabolic reactions in yeast are primarily controlled by changes in213
metabolite levels42, implying that the enzymes which carry out those reactions are not saturated.214

It has previously been argued that glucose uptake rate in yeast can be explained by external glucose concentration and215
the kinetics of glucose transporters43. We sought to test if this held true in our glucose-limited cultures as well. We216
used the abundance of the different hexose transporters (measured via proteomics) and the reported values of their217
Michaelis-Menten kinetic parameters (measured in vitro44) to predict glucose uptake rates in each glucose-limited218
culture. Our results were in good agreement with measured values (Fig. 5H and Supplementary Note 2). Thus, unlike219
respiration, in which the ETC is saturated by NADH, glycolysis is not saturated. Instead, the rate of glucose uptake is220
determined by external glucose levels, and the rate of fermentation is flexible.221
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An integrated model of redox balance explains aerobic glycolysis222

Glycolysis, respiration, and fermentation are linked through redox balance: glycolysis and the TCA cycle generate223
reducing equivalents, and these are consumed by respiration and fermentation (Fig. 6A). We sought to determine if224
our models of glucose uptake rate and respiration rate could thus predict the rate of fermentation.225

We first calculated the total rate at which reducing equivalents were produced using a simple empirical model relating226
glucose uptake rate, glycolytic flux, and TCA cycle flux (Supplementary Note 3 and Fig. S8). The predictions of this227
model (Fig. 6B, dashed blue line) compared favorably with rates of reducing equivalent production determined directly228
from extracellular flux measurements (Fig. 6B, solid blue line). We next used the SAD model to calculate the rate229
at which respiration consumed reducing equivalents (Fig. 6B, dashed green line) which are in agreement with rates230
determined from direct OCR measurements (Fig. 6B, solid green line). At steady state, the total rate of production231
and consumption of reducing equivalents must be balanced. Thus, we calculated the fermentation rate by taking the232
difference between the total rate of reducing equivalent production (blue) and the rate of consumption by respiration233
(green). The predicted fermentation rate (Fig. 6B, dashed orange line) agrees with the measured fermentation rate234
(Fig. 6B, solid orange line).235

At the lowest glucose concentration, there is no fermentation. As glucose concentration increases, glucose uptake rate236
increases, as does growth rate. The increase in growth rate leads to a decrease in mitochondrial content, and thus237
respiratory oxidative capacity. Increasing glycolytic flux and decreasing respiratory flux leads to a continual increase238
in fermentation with glucose concentration. Therefore, the combination of the glucose uptake rate model and the SAD239
model provide a mechanistic explanation for aerobic glycolysis (Fig. 6C).240

Discussion241

Here we have combined respirometry, quantitative imaging, proteomics, and stable isotope tracing to identify trends242
in mitochondrial growth and metabolism across a range of conditions in budding yeast. These analyses have led to the243
saturation-accumulation-dilution (SAD) model of respiratory flux control: respiration operates at a constant rate per244
unit mitochondria, and hence the amount of mitochondria per cell determines cellular respiration rate; mitochondrial245
biogenesis occurs at a nearly constant rate across growth conditions, and hence the amount of mitochondria per cell is246
set largely by cell division time. The SAD model provides a quantitative, mechanistic explanation for respiratory flux247
control and aerobic glycolysis in budding yeast.248

Previous work has focused on identifying potential fitness benefits associated with fermentation under aerobic condi-249
tions21–23. In contrast, the present study provides a mechanistic explanation of aerobic glycolysis: that this phenomenon250
arises naturally from the combination of the SAD model of respiration and the kinetics of glucose transporters. This251
finding reinforces the idea that the onset of fermentation is driven by the production of reducing equivalents exceeding252
respiratory capacity12,45.253

Our work highlights three avenues for future work on mitochondrial metabolism and biogenesis. First, because254
respiration drives ATP production, it seems counterintuitive that inhibiting processes that consume ATP can leave255
respiration unchanged. However, it is conceivable that cells possess ATP flux-buffering mechanisms that maintain total256
ATP consumption, or alternatively, that mitochondria may decouple respiration from ATP production by modulating257
proton leak10. Second, the mechanism underlying the similar rates of mitochondrial biogenesis across different258
conditions is not yet clear9. Numerous processes, including lipid synthesis, membrane assembly, and synthesis and259
import of proteins must all be coordinated to enable mitochondrial biogenesis37,46–49, but which of these is rate-260
determining is not understood. Furthermore, the mechanism limiting mitochondrial biogenesis may be different in261
different growth regimes, as suggested by the scaling of mitochondrial content with growth rate when cells divide very262
slowly6,9,50. Even in these alternative growth regimes, differential regulation of mitochondrial biogenesis rates and263
cell growth rates may play an important role in determining mitochondrial abundance, and hence regulating metabolic264
fluxes. Third, it is not yet clear to what extent the SAD model describes respiratory flux control and fermentation in265
other systems. Recent work has provided evidence that part of this model – that mitochondria are saturated by NADH –266
may be true in mammalian cells: respiration in mouse oocytes is similarly insensitive to perturbations of ATP demand267
and nutrient supply8, and it has been argued that mitochondria are saturated in cancer cells16. However, the role of268
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membrane potential in controlling respiration rate may be more complex in these cells. It is also currently unknown if269
in other systems variation in mitochondrial amount is the primary driver of variation in respiration rate, and whether270
cell division time underlies the differences in mitochondrial amount.271

Though the molecular players involved in central carbon metabolism are well-known and have been thoroughly charac-272
terized, it has remained unclear what sets fluxes through these pathways. Here, we have developed a phenomenological273
model of respiratory control and aerobic glycolysis. The quantitative, coarse-grained approach we have employed may274
guide future efforts to develop a systems-level understanding of other aspects of metabolism and growth.275
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3. Dejean, L., Beauvoit, B., Bunoust, O., Guérin, B. & Rigoulet, M. Activation of Ras cascade increases the280
mitochondrial enzyme content of respiratory competent yeast. Biochemical and Biophysical Research Commu-281
nications 293, 1383–1388 (2002).282

4. Bianchi, C., Genova, M. L., Castelli, G. P. & Lenaz, G. The mitochondrial respiratory chain is partially organized283
in a supercomplex assembly: kinetic evidence using flux control analysis. Journal of Biological Chemistry 279,284
36562–36569 (2004).285
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Figure 1: Respiration rate is insensitive to physiological perturbations of ATP demand and nutrient supply. (A)
Mitochondria couple carbon source catabolism, oxygen consumption, and ATP production; many different cellular
processes consume ATP. Perturbing the rate of different ATP consuming processes (B) causes significant changes to
growth rate (𝑛 = 3 biological replicates), and (C) causes significant changes to ATP concentrations, as assayed by
the FRET sensor yAT1.03 (𝑛 = 3 biological replicates), but (D) does not significantly affect OCR (𝑛 ≥ 6 biological
replicates). In (B)-(D) all data are shown as mean ± s.e.m., and 𝑝-values are obtained by a one-way ANOVA. (E)
Extended growth in different carbon sources results in different OCR (𝑛 ≥ 3 biological replicates). (F) Cells grown
for an extended period in one carbon source were shifted to another carbon source before metabolic measurements.
(G) OCR remains unchanged following shifts between glucose and ethanol (𝑛 ≥ 3 biological replicates). 𝑝-values
are obtained by Welch’s two-tailed 𝑡-test. (H) OCR following pairwise shifts between five different carbon sources is
largely explained by the preshift carbon source (𝑛 ≥ 3 biological replicates). Dotted reference lines indicate OCR for
shifts where the starting and ending media are the same (no change in carbon source). FVE = fraction of variance in
mean OCR of different conditions that is explained by initial carbon source. In (E), (G), and (H) all data are shown as
mean ± s.e.m.
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Figure 2: Mitochondrial content explains OCR differences because of electron transport chain saturation by
NADH. (A) Confocal micrographs of mitochondria-targeted mNeonGreen (0.2 µm-spaced 𝑧-slices) were used to
reconstruct the 3-dimensional structure of mitochondrial networks in single cells. (B) Mitochondrial network volume
is linearly related to OCR across a variety of carbon sources. Points are shown as mean ± s.e.m. of 𝑛 ≥ 208 cells per
condition across 𝑛 ≥ 3 biological replicates. SC = synthetic complete media, YNB = yeast nitrogen base media. (C)
Mean single-cell mitochondrial volume and total abundance of mitochondrial proteins (as measured by proteomics,
𝑛 = 3 biological replicates) are proportional. Dashed line represents linear regression of protein abundance against
mitochondrial volume. (D) Linear regression of OCR against abundances of different functional classes of respiration-
related proteins reveals that, while OCR is correlated with the abundance of various protein groups, it is strictly
proportional only to electron transport chain (ETC) content. In (C) and (D) all data are shown as mean ± s.e.m., and
𝑝-values, estimated by bootstrapping, indicate the probability of observing the associated 𝑦-intercept, or one more
extreme, given the null hypothesis that the 𝑦-intercept is zero. (E) OCR measurements and NADH concentration
measurements for cells treated with different concentrations of IAA are consistent with saturation of the ETC by
NADH. Data are shown as mean ± s.e.m. (𝑛 ≥ 3 biological replicates). In (B)-(E) dashed lines indicate best fit from
regressions, and shaded regions indicate the 95% confidence interval from bootstrapping.
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Figure 3: Variation in cell division time is the primary determinant of differences in mitochondrial content
across various carbon sources. (A) Time-lapse confocal imaging of the mitochondrial network in a single cell. The
max-𝑧 projections of 3d images are shown; scale bar is 5 µm. (B) Extraction of single-cell mitochondrial biogenesis rate
from linear regression of mitochondrial network volume over time. (C) Cell-cycle-averaged mitochondrial biogenesis
rate for cells cultivated in SC medium with different carbon sources. Data are shown as mean ± s.e.m. calculated by
bootstrapping of 𝑛 ≥ 151 mitochondrial growth trajectories across G1 and budding from 𝑛 = 3 biological replicates.
(D) Population doubling times in different carbon sources. Data are shown as mean± s.e.m., 𝑛 ≥ 4 biological replicates.
(E) Predicted average mitochondrial volume per cell, calculated from measured mitochondrial biogenesis rates and
cell cycle times (Supplementary Note 1) agree with mean measured mitochondrial network volumes. Points represent
mean ± s.e.m. (F) Schematic of single-cell mitochondrial volume over the course of a cell cycle in conditions with long
and short division times. (G) Total abundance of mitochondrial, ER and Golgi, cytoplasmic, vacuolar, membrane-
associated, and nuclear proteins as a function of population doubling time. The 17 different growth conditions were
grouped into five bins according to doubling time for clarity; the mean doubling time and organelle protein content
for each of these bins is shown. Error bars indicate 68% confidence intervals from bootstrapping. 𝑝-values indicate
the probability that each regression slope would be observed given the null hypothesis that organelle abundance is
independent of doubling time.
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Figure 4: The transition to aerobic glycolysis is not driven by a transition in TCA cycle fluxes. (A)-(B) Growth
rate, glucose consumption, ethanol production, and oxygen consumption rates in dilute glucose-limited batch cultures,
as a function of glucose concentration in the media. Mean ± s.e.m. (𝑛 ≥ 6 biological replicates). (C) Extracellular
flux measurements and stable isotope tracing were integrated into 13C -MFA, which enabled inference of fluxes
through central carbon metabolism in each glucose-limited culture. (D) Contribution of TCA cycle-derived reducing
equivalents to measured oxygen consumption rate.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 5, 2024. ; https://doi.org/10.1101/2024.07.04.601975doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.04.601975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Glycolysis and fermentation are not saturated. (A)-(D) Acute inhibition of microtubule polymerization
with nocodazole (noco), and partial inhibition of glycolysis with IAA, each (A) do not significantly perturb oxygen
consumption (𝑛 ≥ 4 biological replicates), but (B)-(D) decrease growth, glucose consumption, and ethanol production
(𝑛 = 6 biological replicates). Data are shown as mean ± s.e.m. (E) Key reactions in glycolysis and fermentation.
The abundances of enzymes facilitating rate-determining reactions in (F) glycolysis and (G) fermentation are not
proportional to the flux through those pathways (colored lines). Data are shown as mean ± s.e.m. (𝑛 = 3 biological
replicates for proteomics, and 𝑛 ≥ 6 for fluxes). Dashed lines indicate linear regressions of enzyme abundance against
flux, and shaded regions indicate 95% CI for regressions. (H) Measured glucose consumption rate (solid line) is
well-predicted by Michaelis-Menten kinetics.
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Figure 6: Aerobic glycolysis is explained by the SAD model and the kinetics of glucose transporters. (A) At steady
state, production and consumption of reducing equivalents are balanced. (B) Flux of reducing equivalent production,
and consumption by respiration and fermentation, as a function of glucose concentration. Ethanol production begins
when reducing equivalent production exceeds consumption by respiration. Solid lines and error bars indicate mean
± s.e.m. for measurements; dashed lines and shaded regions indicate mean ± s.e.m. for model predictions. (C)
Summary of physiological differences under low- and high-glucose conditions which underlie aerobic glycolysis.
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Methods376

Strains and culture conditions377

All strains used in this study were prototrophic W303 derivatives (see Table S1 for a detailed list of strains and their378
genotypes.) Yeast were cultivated at 30°C with agitation in synthetic complete (SC) or yeast nitrogen base (YNB)379
media. The carbon sources used were 2% w/v glucose, 2% w/v sucrose, 2% w/v galactose, 2% v/v ethanol, and 3% v/v380
glycerol (for different carbon source experiments), and 0.5%, 0.2%, 0.1%, 0.05%, 0.02%, and 0.01% w/v glucose (for381
glucose limitation experiments). Cells were grown for at least 15 doubling periods and maintained in exponential phase382
for at least two doubling periods prior to all measurements. Growth rates were determined by measurements of optical383
density at 600 nm (OD600) using a Genesys 30 Visible spectrophotometer (Thermo Scientific). The correspondence384
between optical density and cell dry weight was determined by filtering exponential-phase cultures, drying them at385
65°C for 24 hours, then measuring the mass and subtracting that of the dried filter.386

ATP demand, nutrient supply, and membrane potential perturbations387

For ATP demand perturbations, imaging, growth rate, and respirometry measurements were performed on cells388
cultivated in SC medium with 2% v/v ethanol, which produce ATP exclusively by respiration.389

For protein synthesis inhibition experiments, cells were treated with 300 µM anisomycin (ANS) for 30 min before390
measurements. Action was verified by measuring nascent protein synthesis using the Click-iT kit (Click Chemistry391
Tools) as per manufacturer recommendations. In brief, cells were treated with or without ANS, then transferred to392
methionine-free SC medium supplemented with 500 µM L-homopropargylglycine (HPG), with or without ANS, for393
40 minutes. Following HPG incorporation, cells were fixed with 4% paraformaldehyde in PBS, permeabilized with394
0.5% Triton X-100 in PBS, then stained with Alexa Fluor 555 azide. Nascent protein was visualized by fluorescence395
microscopy.396

For microtubule polymerization inhibition experiments, cells were treated with 66 µM nocodazole (noco) for 30 min397
before measurements. A strain with labeled tubulin (Venus-Tub1p), in which microtubule bundles are normally visible,398
was used to verify that nocodazole had dissolved bundles.399

For actin polymerization inhibition experiments, cells were treated with 200 µM Latrunculin A (LatA) for 5 min, and400
then diluted into a larger volume for respirometry or imaging. We verified by microscopy that actin polymerization401
remained inhibited following dilution. A strain with a labeled actin-binding protein (Abp140p-mNeonGreen), in which402
the branched actin network is normally visible, was used to verify the dissolution of the network.403

For high-salt perturbation experiments, cells were transferred to SC medium containing 2% v/v ethanol and 200 mM404
NaCl before measurements, which is known to increase ion pumping activity1. Because acute exposure to high sodium405
is known to decrease cytosolic pH2, we verified the physiological effect of NaCl treatment by measuring pH using the406
genetically encoded sensor pHluorin23,4 using a fluorescence lifetime readout5.407

For growth rate measurements, culture density was measured for three points following each inhibition, except in408
the case of LatA treatment, for which two points were used. ATP concentrations were measured using a genetically409
encoded Förster resonant energy transfer (FRET) biosensor, yAT1.036. Changes in bound state were measured using410
fluorescence lifetime imaging, as described below. For nutrient shift experiments, exponentially growing cells were411
harvested by centrifugation, washed once in the new medium, then resuspended in the new medium. Measurements412
were typically completed within 30 minutes of the shift. For membrane potential perturbations, cells were treated with413
200 nM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) for 30 min before imaging or respirometry.414
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Microscopy415

Sample preparation416

Glass-bottomed dishes were coated with a solution of 4 mg/mL concanavalin A type IV (Sigma-Aldrich) for 5 min,417
rinsed with culture media, filled with cell suspension for 5 min, rinsed using fresh media to remove unbound cells, and418
finally filled with 1 mL of media for imaging. Cells were maintained at 30°C using a stage-top heater box (Ibidi) and419
an objective heater (Bioptechs).420

Fluorescence lifetime imaging421

Fluorescence lifetime imaging microscopy (FLIM) of yAT1.03, NAD(P)H, and pHLuorin2 was performed with a422
two-photon laser scanning microscope controlled by LabVIEW (National Instruments). Excitation was provided by an423
Insight X3 tunable pulsed laser operating at 80 MHz (Spectra-Physics) and emission was detected using HPM-100-40424
photomultiplier tubes and SPC-150 time-resolved single photon counting cards (Becker & Hickl). A 40x 1.2 NA water425
immersion objective (Nikon) was used for all measurements.426

yAT1.03 imaging was performed with 865 nm excitation and a 482/35 emission filter; NAD(P)H was imaged using 750427
nm excitation and a 460/50 emission filter; and pHluorin2 was imaged with 927 nm excitation and a 525/50 emission428
filter (all filters were purchased from Semrock). For yAT1.03 and NAD(P)H imaging, we fit normalized fluorescence429
lifetime decays 𝐹 (𝑡) to a two-exponential model (with signal amplitude 𝐴, long lifetime 𝜏𝑙 , short lifetime 𝜏𝑠 , and short430
lifetime fraction 𝑓 ), convolved with the instrument response function (IRF):431

𝐹 (𝑡) = IRF ⊗
[
𝐴

(
𝑓 𝑒−𝑡/𝑡𝑠 + (1 − 𝑓 )𝑒−𝑡/𝜏𝑙

)
+ (1 − 𝐴)

]
(1)

The instrument response function was measured using second harmonic generation from a urea crystal. Heatmaps of432
mean pHluorin2 fluorescence lifetimes were obtained by computing the mean arrival time for each cell pixel, averaged433
over neighboring cell pixels, weighted by a Gaussian kernel with a standard deviation of 30 pixels. Arrival times were434
corrected by subtracting the peak arrival time of the instrument response function.435

Confocal imaging436

Confocal imaging of mitochondrial networks was performed with a Nikon Eclipse Ti microscope equipped with a437
CSU-X1 spinning disk unit (Yokogawa), an ORCA Flash CMOS camera (Hamamatsu), 488 and 560 nm laser lines438
(Spectral Applied Physics), and a 60x 1.2 NA water immersion objective (Nikon).439

Mitochondrial network structure was visualized using an mNeonGreen fluorescent protein targeted to the mitochondrial440
matrix using a pre-Su9 sequence (mito-mNeonGreen7). Mito-mNeonGreen was imaged using 488 nm excitation and441
a 525/50 nm emission filter. Cytoplasmic mCherry was used as a fiducial marker for segmentation of individual cells.442
A labeled septin ring component, mRuby2-Cdc3p, which is only visible when cells are not in G1, was used as a cell443
cycle marker8,9. Cytoplasmic mCherry and mRuby2-Cdc3p were simultaneously imaged using 560 nm excitation444
and a 594/30 nm emission filter. 𝑧-stacks were acquired with a spacing of 0.2 µm for mNeonGreen and 1 µm for445
mCherry/mRuby2 using MicroManager 1.4 controlled by a custom Beanshell script.446

Measurement of mitochondrial volume and biogenesis rate447

Automatic instance segmentation of cells was performed with CellPose10. Cells which could not be unambiguously448
segmented due to growth out of the field of view or overlapping in 𝑧 were excluded from the segmentation. Time-lapse449
tracking of cell masks was performed with btrack11. Masks were manually corrected where necessary. Cell cycle450
trajectories were manually annotated on the basis of cell morphology and signal from mRuby2-Cdc3p.451
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Mitochondrial networks were segmented by Mitograph12 which produces a skeleton and surface mesh for each network.452
Segmented tubules were stretched in 𝑧 relative to 𝑥𝑦 due to anisotropy in the point spread function, so the geometry453
of individual tubules was corrected by traversing the network skeleton and shrinking the distance to the nearest mesh454
point to ensure that the average profile was cylindrical. The volume enclosed by the corrected surface mesh was used455
for further analysis.456

Membrane potential measurements457

Cells were grown in SC+0.1% glucose to mid-exponential phase, then stained for 30 minutes with 100 nM tetramethyl-458
rhodamine (TMRM; Sigma-Aldrich). Cells were harvested by centrifugation, resuspended in TMRM-free media, and459
imaged by confocal microscopy. Mitochondria were segmented using Otsu thresholding.460

Oxygen consumption rate measurements461

An oxygen-sensitive electrode (OX-50, Unisense A/S) was calibrated using air-saturated media and media sparged with462
nitrogen gas as endpoints. A chamber with the electrode was filled with cell suspension and then sealed. Oxygen463
depletion was monitored for 10-20 minutes, and the initial portion of the oxygen concentration trace, during which464
equilibration takes place, was discarded. A linear regression was performed to calculate the slope (i.e. the oxygen465
consumption rate), which was then normalized by cell density.466

Uptake and secretion rate measurements467

Glucose consumption and ethanol, glycerol, and pyruvate production rates were determined using serial measurements468
of media composition in batch cultures, similar to previously described procedures13. Overnight cultures were back-469
diluted to OD 0.02-0.1 and grown for at least two doublings before beginning measurements to ensure cells were in470
the exponential growth phase. Cell density was measured and media aliquots were collected for at least three points471
during the early portion of the growth curve, when cultures were dilute and growing exponentially, to ensure that472
concentrations remained similar over the course of the experiment. For experiments involving acute perturbations,473
cells were treated with either 200 µM iodoacetic acid or 66 µM nocodazole for 20 minutes before beginning sampling.474

A 3-(trimethylsilyl)-1-propanesulfonic acid (DSS-d6; 50 mM in D2O) internal standard was diluted 1:10 in spent475
medium, which was then analyzed by 1H NMR (400 MHz, Bruker). Spectra were collected using the zgesgp pulse476
sequence, and analyzed with MestReNova software. The following chemical shifts were used for quantitation: 0 ppm477
(s, 9H) for DSS-d6, 3.46 ppm (m) for glucose, and 1.17 ppm (t, 3H) for ethanol. Calibration curves based on standards478
of known glucose and ethanol content were used to calculate concentrations of these species in media samples. Glycerol479
and pyruvate content were quantified by LC-MS.480

The ratio of extracellular flux to growth rate was determined by a linear fit of glucose, ethanol, glycerol, and pyruvate481
concentration against culture density over time. The growth rate under each condition was determined by a linear fit of482
the logarithm of cell density over time. The product of these two values yielded the absolute glucose, ethanol, glycerol,483
and pyruvate fluxes.484

Isotope tracing and LC-MS analysis485

Cells were grown for at least 24 hours in SC medium with the appropriate concentration of glucose, then harvested by486
centrifugation, washed once in fresh medium containing the same concentration of 13C glucose, resuspended in fresh SC487
+ 13C glucose at OD600 0.05-0.1, and grown for 4-6 hours. Parallel tracing experiments were performed for each glucose488
concentration: one with 100% 1,2-13C glucose, and the other with 100% U-13C glucose. Exponentially growing cells489
were harvested by vacuum filtration on nylon membrane filters (0.45 µm) resting on a fritted glass support. Filters were490
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quickly rinsed with 1 mL of yeast nitrogen base (YNB) media without glucose, and immediately flipped cell-side-down491
into 400 µL of -20°C 40:40:20 high-performance liquid chromatography (HPLC) grade acetonitrile:methanol:water492
in a six-well plate to rapidly quench metabolism. Extraction was continued for 20 min at -20°C, following which493
filters were flipped cell-side-up and thoroughly washed with the extraction solvent in the well. Metabolite extracts494
were collected in an Eppendorf tube, centrifuged at 4°C for 10 min, re-extracted with 100 µL of fresh solvent, and495
centrifuged once more. Supernatants were combined and dried using a vaccuum concentrator at ambient temperature,496
stored at -80°C, and analyzed within 48 hours.497

Metabolite extract samples were reconstituted in HPLC-grade water and analyzed by HPLC (Vanquish Duo UHPLC,498
Thermo Fisher Scientific) using a hydrophilic interaction chromatography column (XBridge BEH Amide XP Column,499
130 Å, 2.5 µm, 2.1 mm × 150 mm, Waters), coupled to a high-resolution orbitrap mass spectrometer (Q Exactive Plus,500
Thermo Fisher Scientific). MS was performed in both positive and negative mode using a mass resolution of 140,000501
at 200 m/z. Data was processed using MAVEN14 and corrected for natural isotope abundance using AcuCorr15.502

Metabolic flux analysis503

13C -metabolic flux analysis (13C -MFA) was performed using INCA16. Briefly, a model of central carbon metabolism,504
consisting of glycolysis, the pentose phosphate pathway, the TCA cycle, fermentation, and coarse-grained biomass505
production reactions was constructed, and was fit to 13C labeling patterns of metabolites in these pathways. We included506
constraints based on extracellular flux measurements (glucose consumption, oxygen consumption, ethanol production,507
glycerol production, and pyruvate production), growth rate measurements, and biomass composition measurements508
from13,17,18. For each condition, the best-fit flux solution was chosen from 200 alternative solutions with randomized509
initializations (results in Table S6).510

Absolute quantification of NADH511

We quantified NADH in two independent ways: via LC-MS and by FLIM. For LC-MS-based quantification, we512
extracted metabolites from samples of interest as well as a reference sample (prototrophic W303 grown in YNB +513
2% glucose) for which absolute quantification of a large number of metabolites, including NADH, has already been514
performed19. We calculated the NADH concentration in the unknown sample by comparing to the reference. For IAA515
titration, a Michaelis-Menten model was fit to the OCR and LC-MS measurements of NADH concentration:516

𝐽OCR =
𝑣max[NADH]
𝐾𝑀 + [NADH]

(2)

For FLIM-based quantification, we imaged NAD(P)H in live cells as described above. We assume that the molecular517
brightness of a species is proportional to its fluorescence lifetime20. The concentration of NADH is then proportional518
to intensity 𝐼 and a constant 𝛾 that depends on experimental parameters such as laser power and detection efficiency:519

[NADH] = 𝛾 · 𝐼/[(𝜏𝑙 − 𝜏𝑠) 𝑓 + 𝜏𝑠] (3)

We constructed a calibration curve using standard solutions of NADH, and used this to calculate the NADH concen-520
tration in the unknown samples. However, because NADH and NADPH both contribute to the measured fluorescence521
in cells, a Michaelis-Menten model with an offset was used to relate OCR and NAD(P)H concentrations measured by522
FLIM:523

𝐽OCR =
𝑣max ([NAD(P)H] − offset)
𝐾𝑀 + ([NAD(P)H] − offset) (4)

When the fitted value of the offset was subtracted from the measured NAD(P)H concentration, it yielded a curve similar524
to that obtained from LC-MS measurements of NADH (Fig. S5D). This is consistent with a significant but relatively525
constant pool of NADPH contributing to the observed intensity.526
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Proteomics measurements527

Exponentially growing cells were harvested by centrifugation for 2 min at 1500 x g at 4°C. Cells were washed once528
in ice-cold deionized water, then resuspended in 1 mL ice-cold resuspension buffer (50 mM HEPES pH 7.2 with529
cOmplete Mini EDTA-free Protease Inhibitor Cocktail (Roche)). The cell suspension was added dropwise to a bath of530
liquid nitrogen. The same procedure was followed for an equal volume of resuspension buffer containing 4% w/v SDS.531
Frozen yeast and lysis buffer were added to grinding jars pre-chilled to -196°C, which were then shaken for 3 min at a532
rate of 15 s−1 in a MM400 cryomill (Retsch). Jars were then removed and re-cooled in liquid nitrogen. This procedure533
was repeated five more times.534

Samples were prepared mostly as previously described21. Concentrations were determined by reducing agent-535
compatible Bicinchoninic acid (BCA) assay (Pierce). To reduce disulfide bonds, dithiothreitol (DTT) was added536
to a final concentration of 5 mM and samples were incubated for 20 min at 60°C. After cooling to room temperature,537
cysteines were alkylated using N-ethyl maleimide (NEM; final concentration of 20 mM) for 20 min at room temper-538
ature. NEM was quenched by an excess of 10 mM DTT. Protein was purified by SP3 precipitation22 using magnetic539
beads (SpeedBead Magnetic Carboxylate, cytiva) at 50% ethanol, then washed three times in 80% ethanol. Protein540
was digested overnight with 20 ng/µL LysC (Wako) in 2 M guanidine hydrochloride and 10 mM EPPS (pH 8.5) with541
agitation at 24°C. This was then diluted fourfold with 10 mM EPPS, and an additional 20 ng/µL LysC and 10 ng/µL542
trypsin (Promega) were added; this was incubated overnight at 37°C. Samples were vacuum-dried, resuspended in 200543
mM EPPS (pH 8.0) to a peptide concentration of 1 µg/µL. Labeling of each sample with TMTpro (Thermo Scientific)544
tags was performed for 2 hr at room temperature at a 5:1 mass ratio of TMTpro to peptide, then quenched with 0.5%545
hydroxylamine for 30 min at room temperature before combining different conditions. Samples were acidified (to pH546
< 2) with phosphoric acid and cleared by ultracentrifugation. Supernatants were dried using a vacuum evaporator at547
RT. The resuspended sample was sonicated for 5 minutes and then fractionated by medium pH reverse-phase HPLC548
(Zorbax 300Extend C18, 4.6 x 250 mm column, Agilent). The 96 elutions were pooled into 24 fractions by alternating549
the wells in the plate23. Each fraction was dried and resuspended in 100 µL of HPLC water, acidified to pH < 2 with550
HPLC-grade phosphoric acid, and stage-tipped (C18-tips, Pierce) for desalting24. About 2 µg per fraction in 1% formic551
acid was analyzed in 90 min by LC-MS on an Orbitrap Ascend (Thermo Fisher Scientific) using a Real-Time-Search552
MS3 method25. A quality control sample for cysteine-containing peptides, missed cleavages, labeling efficiency,553
and channel loading was stage-tipped and analyzed by single-shot LC-MS. Three biological replicate cultures were554
harvested and prepared as described above for each growth condition. One replicate of each condition was included in555
each TMTpro experiment; three separate experiments were performed.556

Proteomics data analysis557

Mass spectrometry (MS) data analysis was conducted using the Gygi Lab software platform (GFY Core Version558
3.8) from Harvard University as previously described26. Data in Thermo RAW format were converted to mzXML559
format, correcting errors in peptide ion charge state and monoisotopic m/z assignments27. Monocle software28 sup-560
ported monoisotopic mass detection, and ReAdW.exe was modified to include signal-to-noise ratios during conversion561
(http://sashimi.svn.sourceforge.net/viewvc/sashimi/). MS2 spectra assignments used the SEQUEST562
algorithm29, searching against databases including the Saccharomyces cerevisiae proteome30, common contaminants,563
and reverse protein sequences as decoys. Search parameters included specific ion tolerances and modifications, such564
as TMTpro tags on lysine and peptide N-termini, and NEM on cysteine. A target-decoy strategy31 maintained the false565
discovery rate of assignments in MS2 spectra below 1% , filtering z-scored spectra and peptide properties by a linear566
discriminator27. Calibration adjusted mass errors in MS1 and MS2 spectra, and peptides were assigned to proteins567
based on unique matches. The mass spectrometry proteomics data have been deposited to the ProteomeXchange568
Consortium via the PRIDE32 partner repository with the dataset identifier PXD053535.569

We considered only those proteins which were measured in all three experiments. Ion abundances were first normalized570
by the mean across all channels, then by the median across all proteins quantified within a single channel. The group571
abundances reported here represent the sum of these normalized abundances of each protein in the group. Members572
of each group are listed in Table S3. Localization data was obtained from Uniprot. For organelle-level analyses, we573
included only those proteins which were localized to a single organelle.574
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