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Global protein turnover quantification in
Escherichia coli reveals cytoplasmic recycling
under nitrogen limitation

Meera Gupta 1,2,3,7, Alex N. T. Johnson1,2,3,7, Edward R. Cruz2,3, Eli J. Costa 2,
Randi L. Guest3, Sophia Hsin-Jung Li3, Elizabeth M. Hart3,4, Thao Nguyen 1,2,3,
Michael Stadlmeier 2,3, Benjamin P. Bratton 2,3,5,6, Thomas J. Silhavy 3,
Ned S. Wingreen 2,3, Zemer Gitai 3 & Martin Wühr 2,3

Protein turnover is critical for proteostasis, but turnover quantification is
challenging, and even in well-studied E. coli, proteome-wide measurements
remain scarce. Here, we quantify the turnover rates of ~3200 E. coli proteins
under 13 conditions by combining heavy isotope labeling with complement
reporter ion quantification and find that cytoplasmic proteins are recycled
when nitrogen is limited.Weuse knockout experiments to assign substrates to
the known cytoplasmic ATP-dependent proteases. Surprisingly, none of these
proteases are responsible for the observed cytoplasmic protein degradation in
nitrogen limitation, suggesting that a major proteolysis pathway in E. coli
remains to be discovered. Lastly, we show that protein degradation rates are
generally independent of cell division rates. Thus, we present broadly applic-
able technology for protein turnover measurements and provide a rich
resource for protein half-lives and protease substrates in E. coli, com-
plementary to genomics data, that will allow researchers to study the control
of proteostasis.

Protein degradation is central to protein homeostasis (proteostasis) and
is critical in most cellular pathways1–3. As environments change, mod-
ification of degradation rates can rapidly adapt protein abundances to
desired levels. Even if protein levels are modulated via transcription or
translation, the time it takes for a protein to reach its new steady state is
set by its turnover rate4,5. Unsurprisingly, many signaling and tran-
scriptional regulatory proteins exhibit short half-lives6–9. Protein degra-
dation is important in health and disease, such as cancer and
neurodegenerative disorders10,11. Additionally, protein degradation plays
an important metabolic role. It has been shown that bacteria and yeast
cells increase their proteome turnover rates under starvation condi-
tions, presumably generating and recycling scarce amino acids12–15.

Quantitative models have been developed to describe the
dependence of global protein expression on cells’ physiological char-
acteristics, most notably cell doubling times. These models are prob-
ably the most well-developed for the model bacterium Escherichia
coli16,17. The cell cycle time in E. coli varies from 20minutes in rich
media to the cessation of division under starvation. Transcription rates
typically increase with cell division rates18,19. Knowing how global
parameters scale with physiological cell states allows for remarkable
quantitative predictions for gene expression changes across different
growth conditions16,17. However, active protein degradation by pro-
teolysis is typically ignored in these models. Instead, proteins are
assumed to be completely stable and only diluted via cell growth and

Received: 5 July 2023

Accepted: 25 June 2024

Check for updates

1Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. 2Lewis-Sigler Institute for Integrative Genomics, Princeton
University, Princeton, NJ, USA. 3Department of Molecular Biology, Princeton University, Princeton, NJ, USA. 4Department of Microbiology, Harvard Medical
School, Boston, MA, USA. 5Vanderbilt Institute of Infection, Immunology and Inflammation, Nashville, TN, USA. 6Department of Pathology,Microbiology, and
Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. 7These authors contributed equally: Meera Gupta, Alex N. T. Johnson.

e-mail: wuhr@princeton.edu

Nature Communications |         (2024) 15:5890 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-6714-6985
http://orcid.org/0000-0001-6714-6985
http://orcid.org/0000-0001-6714-6985
http://orcid.org/0000-0001-6714-6985
http://orcid.org/0000-0001-6714-6985
http://orcid.org/0000-0002-7414-6550
http://orcid.org/0000-0002-7414-6550
http://orcid.org/0000-0002-7414-6550
http://orcid.org/0000-0002-7414-6550
http://orcid.org/0000-0002-7414-6550
http://orcid.org/0000-0003-3020-8809
http://orcid.org/0000-0003-3020-8809
http://orcid.org/0000-0003-3020-8809
http://orcid.org/0000-0003-3020-8809
http://orcid.org/0000-0003-3020-8809
http://orcid.org/0000-0001-7806-3077
http://orcid.org/0000-0001-7806-3077
http://orcid.org/0000-0001-7806-3077
http://orcid.org/0000-0001-7806-3077
http://orcid.org/0000-0001-7806-3077
http://orcid.org/0000-0003-1128-2560
http://orcid.org/0000-0003-1128-2560
http://orcid.org/0000-0003-1128-2560
http://orcid.org/0000-0003-1128-2560
http://orcid.org/0000-0003-1128-2560
http://orcid.org/0000-0001-7672-5153
http://orcid.org/0000-0001-7672-5153
http://orcid.org/0000-0001-7672-5153
http://orcid.org/0000-0001-7672-5153
http://orcid.org/0000-0001-7672-5153
http://orcid.org/0000-0001-7384-2821
http://orcid.org/0000-0001-7384-2821
http://orcid.org/0000-0001-7384-2821
http://orcid.org/0000-0001-7384-2821
http://orcid.org/0000-0001-7384-2821
http://orcid.org/0000-0002-3280-6178
http://orcid.org/0000-0002-3280-6178
http://orcid.org/0000-0002-3280-6178
http://orcid.org/0000-0002-3280-6178
http://orcid.org/0000-0002-3280-6178
http://orcid.org/0000-0002-0244-8947
http://orcid.org/0000-0002-0244-8947
http://orcid.org/0000-0002-0244-8947
http://orcid.org/0000-0002-0244-8947
http://orcid.org/0000-0002-0244-8947
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49920-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49920-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49920-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49920-8&domain=pdf
mailto:wuhr@princeton.edu


division. This simplification is likely due to a lack of reliable genome-
wide degradation rate measurements under varying growth condi-
tions. It is still unclear how active degradation rates scale with chan-
ging cell cycle times and how this affects global gene expression
regulation. Knowledgeof protein degradation rates andhow they scale
with the physiological characteristics of cells would improve pre-
dictive models of protein expression across various cell states.

Cells have developed sophisticatedmechanisms to recognize and
degrade specific proteins. While eukaryotes utilize the ubiquitin-
proteasome pathway, in bacteria, selective proteolysis is executed by
ATP-dependent proteases1. While many proteases can digest unfolded
proteins and peptides, unfolding a protein for degradation requires
energy. In E. coli, four ATP-dependent proteases are known: ClpP, Lon,
HslV, and FtsH. Pulldown experiments with inactivated protease
mutants or protein-array studies have allowed the proteome-wide
identification of putative substrates20–23. Orthogonally, individual
substrates have been assigned to the four proteases by measuring the
degradation of individual proteins in protease knockout strains or via
in vitro assays24,25. Several example proteins (e.g., RpoH, LpxC, and
SoxS) have been shown to be degraded by multiple proteases,
demonstrating remarkable redundancy26–28. But it is still unclear to
what extent substrates overlap between different proteases.

Inmost biological systems, protein degradation is balancedby the
synthesis of new protein, making measurements of degradation rates
challenging. An easy way to overcome this complication is by using
translational inhibitors like cycloheximide or chloramphenicol29–31.
Assuming that the additionof the drug does not perturb the cells aside
fromblocking the translation of newproteins, protein degradation can
be conveniently measured by assaying changes in protein abundances
over time viawestern blots or quantitative proteomics. However, when
weperformed suchexperiments in E. coli, we found thatmanyproteins
whose abundances rapidly decreased were periplasmic (Supplemen-
tary Fig. 1). Further investigation revealed that these periplasmic pro-
teins were not degraded but rather were accumulating in the bacterial
growth medium (Supplementary Fig. 1). Presumably, this was due to
protein leakage through the outer membrane. We concluded that
translation inhibitor experiments in E. coli could lead to major per-
turbations, and, thus, interpreting such studies might be challenging.

A classic method to measure the unperturbed turnover of biolo-
gical molecules uses radioactive isotope tracking or the combination
of heavy isotope labeling and quantitative mass spectrometry32,33.
Isotopic labels can be introduced with heavy nutrients (e.g., ammo-
nium, glucose, or amino acids) or by incubation in heavy water. Most
proteomic turnover studies have been performed with heavy amino
acid labeling (dynamic stable isotope labeling by amino acids in cell
culture (SILAC))34,35, but the small number of labeled residues limits
sensitivity for short-time SILAC labeling, andmissing values can hinder
the coverage of multiple time points in complex systems. A further
advance has been the combination of SILAC experiments and isobaric
tag labeling36. However, these measurements tend to suffer from the
inherent ratio compression of multiplexed proteomics37–39. Heavy
ammonium, glucose, and water are comparatively cheap but result in
overly complex MS1 spectra, which are difficult to interpret, particu-
larly for lower abundance proteins40–42. For a more detailed discussion
of the advantages and limitations of various global protein turnover
measurement techniques, please see the recent review by Ross et al.,
particularly Supplementary Table 143.

Despite the central role of protein degradation in nearly every
aspect of biological regulation, reliable and large-scale measurements
are still scarce. Even fewer studies have compared turnover rates
betweenmultiple conditions44,45. Here, wemeasure protein turnover in
E. coli by combining heavy isotope labeling via 15N ammoniumwith the
accurate multiplexed proteomics method TMTproC46. We provide a
rich resource of protein turnover rates for ~3.2k E. coli proteins (77% of

all genes inE. coli)measured across 13 different growth conditionswith
replicates. When comparing turnover rates among various nutrient
limitations, we found that E. coli recycles its cytoplasmic proteinswhen
nitrogen-limited, and we assign substrates to proteases by measuring
the change of protein turnover in knockout strains. Lastly, we show
that active turnover rates are typically independent of cell
division rates.

Results
Combining heavy isotope labeling with complement reporter
ion quantification enables high-quality protein turnover
measurements
We wanted to measure protein turnover rates and evaluate how these
rates vary across growth conditions. To simplify our measurements,
we grow E. coli in chemostats, where we can control the cell doubling
time and enforce steady state (Fig. 1A). After cells reach steady state,
we change the inlet medium from unlabeled nutrients to 15N-labeled
ammonium. Over time, the 15N-ammonium concentration in the reac-
tor increases, and newly synthesized proteins incorporate more heavy
isotopes.We canmonitor the shift in the isotopic envelope of peptides
by taking samples after the media switch using proteomics (Fig. 1B).
With the knowledge of a peptide’s chemical composition and the
fraction of heavy isotopes over time, we can calculate the turnover rate
of the corresponding protein. In practice, however, obtaining such
measurements of isotopic envelopes in the MS1 spectrum is quite
challenging, particularly at later time points when the isotopic envel-
opes spread out and overlap with those of other peptides. MS1-based
label-free quantification relies on accurate assignment of peaks to
peptide elution profiles, which is made more challenging by the
complexity of spectra. Additionally, traditional search algorithms
struggle to identify peptides with a significant fraction of heavy iso-
topes, so missing values at later time points are a severe limitation of
such approaches42. To overcome these limitations, we labeled samples
at each of the acquired eight-time points with TMTpro isobaric tags
and combined them for co-injection into the mass spectrometer46,47.
While MS1 spectra are still extremely complex using this approach, by
combining isotope envelopes of peptides with and without 15N, we
ensure that the pseudo-monoisotopic peak (M0) is always present for
isolation and fragmentation in the MS2, increasing peptide identifica-
tion rates and alleviating the missing value problem. Multiplexing
experiments with highly complex MS1 spectra inevitably increase co-
isolation of multiple peptides in a single MS2 spectra. Analyzing these
extremely complex samples with standard low m/z reporter ion
quantification would lead to severe ratio distortion and measurement
artifacts37,38,48. We overcame this limitation by quantifying the
balancer-peptide conjugates (complement reporter ions) that remain
after reporter ions are cleaved off in the MS2 spectra. Complement
ions have peptide-dependent m/z ratios that are typically slightly dif-
ferent than co-isolated peptides. Therefore, using the complementary
ions for quantification reduces ratio distortion effects compared to
bothMS2 andmulti-notchMS3 reporter ion quantification46,47(Fig. 1C).

Figure 1D shows the peptide-level quantification for a stable pro-
tein, OmpF, and an unstable protein, RpoS, from carbon-limited che-
mostats with 6-h doubling times24,49,50. We built a differential equation
model51 for the dynamics of M0 with a parameter of kD (active degra-
dation rate) and the known variable D (dilution rate) (Supplementary
Note, Supplementary Data 8). For every protein, kD +D (total turnover
rate) is obtained by fitting this model to the experimentally measured
signal of peptides. For a protein that is not actively degrading (kD=0)
and only diluting withD set entirely by the chemostat, we can estimate
the dynamics ofM0. This is called the dilution curve (dotted). Fitting kD
to the measured signal of OmpF peptides yields kD +D ~D which
indicates that this protein is not actively degrading. In contrast, the
deduced total half-life for RpoS is much shorter than the cell doubling
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time. We obtain half-lives for ~2.6k E. coli proteins per experiment with
a median standard deviation of 0.3 h (Fig. 1E, Supplementary Table 1).
Having established this technology, we acquired similar measure-
ments for 13 different growth conditions, each with two biological
replicates, quantifying the turnover rates of ~3.2k proteins in at least
one condition (Table 1, Supplementary Data 1, Supplementary Data 7).
We then used this resource to investigate how E. coli adapts protein
turnover under various growth conditions.

E. coli recycles its cytoplasmic proteins under nitrogen
limitation
Building on our method to measure protein turnover, we wanted to
compare protein turnover rates under various nutrient limitations. To
this end, we compared carbon (C-lim), phosphorus (P-lim), and nitro-
gen (N-lim) limitation measurements from chemostats with 6-h dou-
bling times. We found that most proteins in C-lim are stable with a
measured total half-life close to the theoretical dilution time (Fig. 2A).
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Fig. 1 | Combining heavy isotope labeling with an accurate multiplexed pro-
teomics method (TMTproC) enables high-quality measurements of unper-
turbed protein turnover. A Experimental setup. E. coli cells were grown in
chemostats with a defined doubling time. After reaching steady state, the chemo-
stat feedwas switched to amediumwith 15N-labeled ammonium.Newly synthesized
proteins will increasingly incorporate heavy isotopes. Proteomics samples were
collected at various time points to determine the protein turnover rate98.
B Theoretical isotopic envelopes of an example tryptic peptide, which is assumed
to be stable (protein is removed from the vessel only through dilution). Over time,
the increasing fraction of heavy ammonium in the peptide’s structure shifts the
isotopic envelope to higher masses. Peptides were labeled with isobaric tags
(TMTpro) to encode different time points. C Top: theoretical MS1 spectrum for a
single peptide species after combining labeled peptides from all the time points.
The mass spectrometer was set to isolate the monoisotopic peak (M0) and

fragment the peptide. Bottom: the resulting complement reporter ions (peptide
plus broken tag) enable accurate quantification of the relative abundance within
the M0 peak over time.D Example measurements for the stable OmpF protein and
rapidly degrading RpoS protein. Each dot indicates the peptide quantification
relative to themedian levelmeasured when the feed was switched. The size of each
point is proportional to the number of measured ions. Fitting the observed data
with the theoretical decay profile for M0, we can extract the total half-life for each
protein (solid curve). The dotted curve shows the theoretical decay for a stable
protein (n = 8 time points). E Scatter plot of measured protein total half-lives for
biological replicates of carbon-limited E. coli grown with a 6-h doubling time.
Dotted lines indicate the cell doubling times. The solid line marks the 1:1 line. The
total half-lives for each protein were calculated from the fits shown in (D). Median
standard deviation for the total half-lives between the replicates is 0.3 h.
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Using biological replicates to identify degrading proteins with high
confidence (Fig. 2B), we found that 15% of the proteome is actively
degraded in C-lim (p-values < 0.05). Protein half-lives under P-lim have
a similar distribution and a similar percentage of proteins that degrade
with high confidence. However, in N-limwe found that 43% of proteins
are actively degraded (Fig. 2B, p-value < 0.05).

We found that the increase in protein degradation in N-lim could
be attributed to the active degradation of a wide range of cytoplasmic
proteins (Fig. 2C, D). The mode protein total half-life for membrane
and periplasmic proteins in all three conditions is very close to the
theoretical dilution limit. In contrast, the mode protein total half-life
for cytoplasmic proteins is significantly shorter under N-lim thanC-lim
or P-lim. We estimate that 56% of cytoplasmic proteins are actively
degraded in N-lim, while only 13% of membrane proteins and 4% of
periplasmic proteins undergo active degradation in this condition.
Due to measurement noise and low sample sizes, we expect to be
statistically underpowered and that these estimates are likely lower
bounds of the true extent of protein degradation in N-lim.

We then tested whether cytoplasmic protein degradation in N-lim
chemostats extends to themore physiologically relevant case of batch
starvation. We grew E. coli cells in minimal medium until they reached
an OD600 of ~0.4. We then switched the exponentially growing cells
into medium depleted of nitrogen (Fig. 2E). Once again, many cyto-
plasmic proteins are degraded under nitrogen starvation, and mem-
brane/periplasmic proteins are largely stable. Thus, E. coli cells slowly
degrade their cytoplasmic proteins when nitrogen is scarce in both
chemostats and batch cultures. About 2/3 of the cell’s nitrogen is
stored in proteins52. The degradation of proteins upon nitrogen star-
vation likely allows the regeneration and recycling of scarce amino
acids and enables E. coli to produce new proteins to adapt to new
environments.

Measuring protein turnover in knockout mutants allows the
identification of protease substrates
Next, wewere interested in discovering the protease(s) responsible for
the large-scale turnover of cytoplasmic proteins in N-lim. Combining
protein-turnover measurements with genetic protease knockouts
allows us to investigate protease-substrate relationships on a
proteome-wide level. Since unfolding and degrading stably folded
cytoplasmic proteins requires energy, we focused on assigning sub-
strates to theATP-dependent proteases. In E. coli, there are four known
cytoplasmic ATP-dependent protease complexes: ClpP (in complex
with ClpX or ClpA), Lon, HslV (in complex with HslU), and FtsH1. We
identify putative substrates for the first three of these proteases by
comparing the protein half-lives in protease knockout (KO) with

wildtype (WT) cells (Fig. 3A). We were able to validate several known
protease-substrate targets and identify degradation pathways using
these experiments. For example, the unfoldase ClpA is completely
stabilized by knocking out clpP, consistent with previous literature53.
We identified Tag and UhpA as putative substrates of Lon and HslV,
respectively. However, many proteins still degrade in the three pro-
tease KO lines, e.g., the phosphatase YbhA—which contributes to
Vitamin B6 homeostasis—still rapidly turns over with a total half-life of
~1 h in each knockout strain54. Surprisingly, even the proteins that
increase their half-lives in single KOs are often not completely stabi-
lized. Additionally, bulk cytoplasmic proteins are still degraded in all
three single KOs.

Deleting ftsH is more complicated than the other proteases. One
of its substrates, LpxC, catalyzes the committed step in the lipid A
synthesis pathway. Lipid A is the hydrophobic anchor of lipopoly-
saccharides (LPS), a critical outer membrane component. Deletion of
ftsH leads to increased levels of LpxC, causing an accumulation of LPS
that makes the cells nonviable55. ftsH null cells can be rescued with a
mutation of FabZ (L85P), which slows LPS synthesis and compensates
for the increased LpxC levels55. Interestingly, we were only able to
generate the ΔftsH fabZ (L85P) strain in DY378 background56. Our
attempts to knock out ftsH in the NCM3722 background used for the
remainder of this paper failed. We are currently investigating which
other modifications in DY378 might make ΔftsH fabZ (L85P) viable.
These ΔftsH fabZ (L85P) cells are viable, though unfortunately, they
grow too slowly on minimal media and are washed out of the che-
mostat. Therefore, we could not measure protein turnover in a ftsH
mutant in a similar manner to the other proteases. Instead, we repe-
ated the batch nitrogen starvation experiments (Fig. 2E). Similar to the
WT cells, cells lacking ftsH degraded cytoplasmic proteins. In contrast,
membraneproteins aremostly stable (Fig. 3B). This indicates that none
of the four known ATP-dependent proteases in E. coli are individually
responsible for the large-scale cytoplasmic recycling that occurs under
nitrogen limitation.

We then asked if proteases might act redundantly, i.e., multiple
proteases share a substrate, which could mask the effects of deleting
individual proteases. To this end, we measured protein turnover in a
triple KO line (ΔhslV Δlon ΔclpP) in nitrogen limitation. A quantitative
comparison of protein turnover rates between the triple KO and the
individual KOs allows us to assign the contribution of each protease in
turning over a substrate (Fig. 3D). We can classify the substrates into
six groups: those being degraded predominantly by a single protease,
those where the effects of the individual proteases are additive, those
that are stabilized more in the triple KO than the combined effect of
individual KOs (redundantly degraded), and those that are still actively

Table 1 | Summary of the 13 growth conditions for which we measured protein turnover rates

Strain NCM3722 Condition Reactor type Doubling time Replicates # of proteins

1. Wild type Minimal media Batch 42min 2 2555

2. Wild type C-lim Chemostat 3 h 2 2665

3. Wild type C-lim Chemostat 6 h 2 2651

4. Wild type C-lim Chemostat 12 h 2 2697

5. Wild type P-lim Chemostat 6 h 2 2469

6. Wild type P-lim Chemostat 12 h 2 2619

7. Wild type N-lim Chemostat 6 h 2 2467

8. Wild type N-lim Chemostat 12 h 2 2460

9. Δ hslV N-lim Chemostat 6 h 2 2393

10. Δ lon N-lim Chemostat 6 h 2 2390

11. Δ clpP N-lim Chemostat 6 h 2 2491

12. Δ hslV Δ lon Δ clpP N-lim Chemostat 6 h 2 2809

13. Δ smpB N-lim Chemostat 6 h 2 2535

Union 3262
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degraded in the triple KO (Supplementary Data 2, Supplemen-
tary Fig. 7).

We classified 64 and 14 substrates to be predominantly
degraded by ClpP and Lon, respectively. We only assigned one
substrate uniquely to HslV: UhpA, a transcriptional regulator that
activates the transcription of genes involved in transporting

phosphorylated sugars57. Eighty-two proteins are degraded addi-
tively, a notable example of which is IbpA, a small chaperone.
Previous studies have proposed that Lon degrades free IbpA/lbpB
and bound client proteins58. We found that ClpP and Lon contribute
approximately equally to the degradation of IbpA, and their con-
tribution is additive.
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We classify 41 proteins as being redundantly degraded by two or
more proteases. For example, YbhA is rapidly degraded in all single
KO strains but stabilized in the triple KO, indicating that at least two
of these proteases act redundantly. Interestingly, the majority of
cytoplasmic proteins are still slowly degraded in the triple KO under
nitrogen limitation, and we classified ~100 proteins as still being
actively degraded (Fig. 3E). LexA, an SOS repressor, auto-degrades
itself under stress and unperturbed growth59,60. Consistent with this,
LexA still undergoes degradation in the triple KO. It will be inter-
esting to investigate if other proteins with short half-lives in the triple
KO are auto-degrading, degraded by FtsH, or if othermechanisms are
at play.

To validate our classifications, we compared our protease-
substrate relationships with previous proteome-wide measurements.
We see a significant overlap (p-value = 6E–9) of our identified ClpP
substrates with substrates identified via a trap mutant (Fig. 3F)20.
However, we do not observe an overlap of our putative Lon sub-
strates with a previous Lon-trap experiment (p-value = 0.22)21. This
lack of overlap is most likely caused by our separating the Lon trap
substrates into the different classifications, indicated by a more
significant overlap with the substrates that were stabilized in any of
our KO strains (p-value = 0.05). This is consistent with previous
observations that Lon substrates are often shared with other
proteases61. Interestingly, the putative substrates of HslV identified
through a microarray study show a strong overlap with the proteins
we classify as additive or redundant (p-value = 0.001)23. This is con-
sistent with previous reports that HslV substrates are shared with
other proteases26,62. We also found enrichment (p-value = 0.002)
between substrates identified in a previous FtsH trap63 study and
additive or redundant substrates, consistent with findings that FtsH
often degrades proteins that are also substrates for other
proteases27. The lack of significant overlap between the proteins still
degrading in the triple KO and FtsH-trap substrates implies that FtsH
is likely not involved in the degradation of these substrates.

Surprisingly, 40% of active protein degradation in nitrogen lim-
itation in wild-type cells persists upon knocking out the three cano-
nical ATP-dependent cytoplasmic proteases (Fig. 3G, details of
calculation in the supplementary note and supplementary data 6). We
could not generate a viable quadruple KO with ftsH deletion, so we
cannot rule out the possibility that all four proteases act redundantly
as an explanation of the remaining protein degradation. However, the
results from the individual ftsH knockout (Fig. 3B) and the lack of
overlap between degrading proteins and the FtsH-trap experiment
(Fig. 3F) are evidence against FtsH being responsible for the remaining
degradation. Regardless, a major pathway for degrading proteins in E.
coli remains to be discovered: either FtsH plays a much bigger role
than is currently believed, or a completely new mechanism degrades
cytoplasmic proteins under nitrogen starvation.

Analyzing features of rapidly turning over proteins
We found that most short-lived proteins have similar half-lives
regardless of nutrient limitation (Fig. 4A, Supplementary Data 3).
With gene-set enrichment64, we found that rapidly degraded proteins
were enriched in transcriptional regulators (Benjamini–Hochberg
adjusted p-value = 4E–4). A protein’s response time depends on its
turnover rate5. Proteins involved in transcriptional regulation might
need to rapidly adjust their levels to changing growth conditions.

Using our data set, we validated examples of degradational reg-
ulation that had previously been reported and also uncovered targets.
Of the 24 proteins with the fastest average turnover rates, 17 were
previously reported to be degraded (Fig. 4B). Seven proteins—ThiH,
YgaC, SixA, YciW, CbI, ThiG, EpmB—had no prior evidence in the lit-
erature for degradation. Interestingly, six rapidly degrading proteins—
ThiH, BioB, IscA, IscR, EpmB, Fnr—contain Fe–S clusters, which is sig-
nificantly higher than expected by random chance (BH p-value =
0.048). Flynn et al. previously proposed that Fe–Sbindingproteins are
degraded under aerobic conditions, likely because the Fe–S clusters
are oxidized, destabilizing the protein20.

Multiple metabolic enzymes such as PatA, LpxC, and HemA are
also rapidly degraded. Rapid degradation allows for immediate and
direct control over intracellular protein levels based on cellular
demand. PatA (Putrescine-Aminotransferase) is involved in putrescine
(polyamine) degradation (KM= 9mM) and is unstable under standard
growth conditions with high putrescine levels, in which another
enzyme (PuuA - glutamate-putrescine ligase) dominates usage of
putrescine. PatA is expected to stabilize in specific growth conditions
with lowputrescine concentrations65. LpxC, a protein required for lipid
A synthesis, is rapidly degraded under slower growth to balance LPS
production with cellular demand55. HemA, involved in porphyrin bio-
synthesis, is degraded when the media lacks heme as an iron source66.
DnaQ, the proofreading exonuclease of the stable DNA polymerase III
core enzyme [DnaE][DnaQ][HolE], is rapidly degraded (t1/2 = 1.2 h).
DnaE is more stable with a total half-life of 5 h, whereas HolE is unde-
tected in our data set, likely due to its short length. Free DnaQ is
unstable but stabilized on complexation with HolE67.

We next tested whether these rapidly degrading proteins share
attributes such as their physiochemical properties, sequence features,
or structural characteristics. We found that smaller proteins (MW<
10 kDa) have significantly shorter half-lives regardless of the nutrient
limitation (Fig. 4C, Supplementary Fig. 2A). This enrichment wasmore
pronounced at lower total half-life cutoffs (Fig. 4C). On the other hand,
charge and isoelectric point were not significantly correlatedwith half-
lives under P-lim and C-lim (Supplementary Fig. 2B, C). However, both
the charge and the isoelectric point of a protein were correlated with
half-lives underN-lim (Supplementary Fig. 2B, C p-value = E–20). This is
most likely because cytoplasmic proteins are short-lived under N-lim
whilemembraneproteins are typically stable.Membraneproteins tend

Fig. 2 | E. coli recycles its cytoplasmic proteins when nitrogen is limited.
A Histogram of protein total half-lives for E. coli grown in chemostats under C-lim,
P-lim, and N-lim. The vertical line marks the dilution limit set by the 6-h doubling
time. Total half-lives greater than doubling time indicate measurement noise.
Under C-lim and P-lim, most proteins have total half-lives equal to the doubling
time, suggesting they are stable. However, under N-lim many proteins are actively
degraded. B Separation of the proteome into stable proteins (grey) and actively
degrading proteins (yellow). All proteins with p-value < 0.05 are called confidently
degrading (t-test, one-sided, n = 2). In C-lim and P-lim, 15% of the proteome turns
over with high confidence. In contrast, under N-lim, 43% of the proteome turns
over. C Distribution of total half-lives for proteins from different subcellular loca-
lizations overlayed against the entire proteome. Most proteins are stable under
C-lim and P-lim, irrespective of localization. However, nearly all cytoplasmic pro-
teins slowly degrade under N-lim while the membrane and periplasmic proteomes
are largely stable. D Scatter plots of protein total half-lives in different nutrient

limitations. The dotted black lines mark the dilution limit, the solid black line
denotes perfect agreement. Contour plots contain 50% of the probability mass for
each subcellular compartment. The contour plots of membrane and periplasmic
proteins are centered around the dilution limit in all the binary comparisons,
indicating that most of these proteins are stable under all limitations. However, the
shift in the contour plots of the cytoplasmicproteins on comparingN-limwith P-lim
and C-lim suggests that the cytoplasmic proteins are degraded in N-lim.
E Measurement of protein turnover rates under complete nutrient starvation in
batch. In batch, like the N-lim chemostat, the cytoplasmic proteins are degrading
with high confidence as compared to the membrane and periplasmic proteins
(ANOVA, p-value = 9E–16, n = 2114 proteins). The box extends from the first quartile
to the thirdquartile of thedata, with a line at themedian. Thewhiskers extend from
the box to the farthest data point lying within 1.5× the inter-quartile range from
the box.
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to have higher isoelectric points andmore positive charge due to their
interaction with negatively charged phospholipids68,69.

One obvious sequence feature to investigate is the N-end rule,
which relates a protein’s stability to its amino-terminal residue70.

Amino-terminal arginine, lysine, leucine, phenylalanine, tyrosine,
tryptophan, and formylatedN-terminalmethionine (fMet) arebelieved
to be destabilizing residues,whereas the other residues are believed to
be stabilizing70,71. First, we determined the in vivoN-terminal residue of
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total half-lives of N-limited wild type (WT) compared to ΔclpP, Δlon, and ΔhslV
knockout (KO) cells. Dotted lines mark the dilution limit, the solid black line indi-
cates perfect agreement. Substrates (black x) increase their total half-lives in KOs
with high confidence (t-test, one-sided, p-value < 0.10). ClpA (pink), Tag (teal), and
UhpA (purple) are the substrates of ΔclpP, Δlon, and ΔhslV, respectively. However,
the protein YbhA (orange) is still degraded in individual KOs. Contour plots con-
taining 50% of the probability mass for the cytoplasmic (red) and membrane
(green) proteins indicate that individual KOs degrade bulk cytoplasmic proteins.
B Since ΔftsH cells cannot grow in chemostats, we repeated the batch starvation
assay as in Fig. 3E. The box extends from the first quartile to the third quartile, with
a line at the median. The whiskers indicate 1.5× the inter-quartile range from the
box. Results indicate that the ΔftsH cells, like the WT, also degrade their cyto-
plasmic proteins under nitrogen starvation (t-test, two-sided, p-value = 2E–12 for
WT and p-value < 2E–16 forΔftsH,n = 1519).C Scatter plots of protein total half-lives
of WT and ΔclpP Δlon ΔhslV cells in N-lim. The substrates (black x) increase their
total half-lives in the triple KO (t-test, one-sided, p-value < 0.09). Many proteins are

still degrading in the triple KO, e.g., LexA and YoaC (blue). In fact, the bulk cyto-
plasm is still degraded. However,manymoreproteins are stabilized in the triple KO
compared to the individual KOs, indicating redundancy among substrates, e.g.,
YbhA (orange).DComparing the shifts in theWT and KO strains’ total half-lives, we
assign each protease’s contribution to active protein turnover. The bar graph
represents examples from each of the six categories—turnover explained pre-
dominantly by ClpP, Lon, HslV, additive contributions, redundant contributions,
and actively degrading proteins in the triple KO. E Bar graph for the number of
substrates and the % of the proteome assigned to each of the six categories
described in (D). F Comparison of the substrates from our categories in E with
previous proteome-wide substrate-protease assignment studies. ClpP trapped
substrates significantly overlapwith the identifiedClpP substrates (Fisher test, two-
sided, p-value = 6E–9), and previously identified substrates of HslV and FtsH show a
significant overlap with redundant and additive substrates (Fisher test, two-sided,
p-value = 1E–3).GComparison of the percentage of active turnover per hour across
the protease KOs under N-lim. Even after knocking out hslV, lon, and clpP simul-
taneously, 40% of the WT proteome turnover remains, suggesting that a major
pathway of protein degradation in E. coli remains to be discovered.
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~600 proteins using a label-free proteomics data set (Supplementary
Data 4). MS2 spectra were searched with the Sequest algorithm72

considering all possible N-terminal tryptic subfragments for a protein.
Encouragingly, when we compared a small subset of the identified
N-termini with previous data in literature obtained using Edman
Degradation73we found nearly perfect agreement (55/61 proteins)

(Fig. 4D). Surprisingly, however, our rapidly degrading proteins
showed no enrichment for the previously reported destabilizing
N-terminal amino residues (Fig. 4E). Interestingly, few proteins detec-
ted ineitherdataset haddestabilizingN-terminal residues. It is possible
that proteins with destabilizing N-termini are immediately degraded
and therefore difficult to detect. Proteins which had destabilizing
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residues exposed via cleavage would similarly be short-lived and low
abundant. In this case, the main-determinant of protein half-life would
be the rate at which destabilizing N-termini are exposed. Either way,
our results suggest that the N-terminus of E. coli proteins is not the
primary determinant of proteins’ in vivo stability.

The SsrA-tagging system is another known degron used for
marking polypeptides for degradation whose translation has
stalled74To investigate howmuch of the observed protein degradation
could be attributed to the system, we knocked out the smpB gene
(codes for a protein in the SsrA tagging complex75), and measured
gene-by-gene protein turnover in nitrogen limitation with a 6-h dou-
bling time in duplicate. We did not observe significant changes in
protein turnover compared to the wild-type strain (Supplementary
Fig. 10). It’s possible that the primary targets for the SsrA-tagging
system are low abundant relative to stably-fold proteins, or that
another pathway (e.g., ArfA-mediated76) for releasing stalled ribo-
somes is redundant with the SsrA system.

Another sequence feature previously shown to affect protein
stability in bacterial and eukaryotic cells is intrinsically disordered
protein segments77,78. To this end, we determined the percentage dis-
order for all the proteins using the Espritz algorithm79. Disordered
proteins had significantly shorter half-lives than ordered proteins
(Fig. 4F, p-value = E–208). Interestingly, this enrichment further
increases when we use protein half-lives measured in the triple pro-
tease knockout cells (ΔhslV Δlon ΔclpP) (Fig. 4G). This is consistent
with ATP-dependent proteases being able to unfold and digest struc-
tured proteins. Once these proteases are removed, the remaining
proteins with short half-lives should be enriched for those that are
unstructured and therefore prone to degradation by energy-
independent proteases.

Analysis of turnover for functionally related proteins
Next, we investigated protein turnover for functionally related protein
modules, such as multiprotein complexes, operons, and metabolic
pathways. We calculated each module’s coefficient of variation (CV)
and compared this to the CV distribution when proteins were ran-
domly assigned to sets. We observe that the functionally associated
modules exhibit significantly lower variance than if the proteins were
randomly assigned to each module (Fig. 5A), suggesting that func-
tionally associated proteins tend to exhibit similar half-lives. For
example, twelve of the fourteen proteins involved in phosphonate
metabolism and transport are rapidly degraded (average total half-life
= 0.7 h) under P-lim (Fig. 5B). These proteins were 16-fold more
abundant in P-lim compared to N-lim and C-lim (Supplementary
Data 5). Therefore, we were unable to measure their half-lives in C-lim
or N-lim, so it’s unclear if they turn over in these limitations as well.

One pathway where this is particularly noteworthy is the rut
pathway for pyrimidine degradation. The pathway is transcribed by a
single operon of seven genes (rutABCDEFG) and has one adjacent

transcriptional repressor, rutR. In our database, we detected five of the
seven proteins plus the repressor. Of these five proteins, four are
rapidly degraded in the wild-type strain and the single protease
knockouts. The fifth protein, RutG, is found in the membrane, which
likely explains its stability. However, when we knock out lon, clpP, and
hslV simultaneously, the four proteins are all significantly stabilized
(Fig. 5C).

The study that originally characterized the rut pathway showed
that when the rut genes are transcriptionally upregulated, E. coli was
able to grow on thymidine as the sole nitrogen source in minimal
media at room temperature80. We reasoned that by removing their
degradation, we could similarly increase protein concentrations and
observe the same growth on thymidine. Indeed, the triple protease
knock-out strain grows to an OD600 of nearly 0.28 on thymidine while
the wild-type strain reaches an OD600 of 0.03 (Fig. 5D).

Additionally, proteins associated with flagella show correlated
expression levels and half-lives. Surprisingly, most of the proteins
forming the basal flagellar body are stable, but the filament (FliC, FliD),
motor (MotA, MotB), and sensory proteins (CheA, CheW) are rapidly
degraded (Fig. 5E). Future work will be required to decipher the
underlying mechanisms and functional relevance.

In general, proteins that form a complex tend to exhibit similar
half-lives (Fig. 5F). Several complexes whose subunits are degraded at
different rates are known to interact weakly or transiently or have
subunits which are expressed non-stoichiometrically, suggesting that
at least some of these discrepancies might be due to annotation
details. For example, ClpA andClpXare theunfoldases in complexwith
ClpP. Autodegradation of ClpA is used to regulate the number of
ClpAP complexes in the cell and the flow of substrates to ClpAP53.
Finally, antitoxins like PrlF are subject to regulated degradation while
their toxin counterparts are stable81,82.

The ribosome is one of the heterocomplexes which exhibits
unanticipated patterns under different nutrient limitations (Fig. 5G).
Under both C-lim and N-lim, ribosomal proteins are slightly more
stable than the median cytoplasmic protein. However, under P-lim,
ribosomal proteins are less stable than typical cytoplasmic proteins.
rRNA contains about 50% of the cellular phosphorus83. Therefore, cells
likely recycle the phosphorus stored in rRNA when phosphorus is
scarce, and associated ribosomal proteins might become unstable
once their binding partners are lost.

Active protein degradation rates typically do not scale with
division rates
So far, we have compared turnover rates under various nutrient lim-
itations but with the same cell division time. We wanted to determine
how active protein degradation scales with cell cycle time. The total
turnover rate (ktotal) of a protein is a combinationof active degradation
(kactive) and dilution (kdilution) due to cell division (Fig. 6A).We consider
two simple and reasonable models of the relationship between these

Fig. 4 | Features of proteins with short total half-lives. A Scatter plot of protein
total half-lives for C-lim, P-lim, and N-lim conditions. The total half-lives of rapidly
degrading proteins are typically similar under different nutrient limitations. Three
proteins with the shortest average total half-lives are marked. Short-lived proteins
are enriched for transcriptional regulators (BH p-value = 4E–4). B The 24 proteins
with the shortest mean total half-lives. For eight of these proteins (in blue), we
could not find any prior literature evidence for degradation, and six (markedwith *)
contain Fe–S clusters (BH p-value = 0.048). (C, E, F) For all the boxplots, the box
extends from the first quartile to the third quartile of the data, with a line at the
median. The whiskers extend from the box to the farthest data point lying within
1.5× the interquartile range from the box.C Smaller proteins have shorter total half-
lives. Left: Box plot of total half-lives averaged over all the nutrient limitations for
low and high molecular weight (MW) proteins (n = 2864 total proteins, p-
value = 1E–11, Mann–Whitney U, one-sided). Right: Fold enrichment of low versus
high MW proteins as a function of total half-life. D Comparison of the proteome-

wide N-terminus amino acid residues obtained from this study and prior literature.
The size of the marker indicates the number of proteins with a particular residue.
ENo correlation between theN-terminal protein residue and protein total half-lives
(N-end rule). Left: Distribution of the N-terminus residues for actively degrading
and stable proteins. Right: Box plots of total half-lives for the destabilizing and
stabilizing residues on their N-terminus (p-value: 0.99, Mann–Whitney U, one-
sided, n = 373 total proteins). FDisordered proteins tend to have shorter total half-
life99. Left: The Espritz algorithmclassifiedproteins asordered or disordered. Right:
Box plot of total half-lives for disordered and ordered proteins (n = 2865 total
protein, p-value = E–18, Mann–Whitney U, one-sided). G Fold enrichment of dis-
ordered versus ordered proteins as a function of total half-life for the WT (olive)
and triple protease KO (brown) cells. Rapidly turning over proteins are enriched for
the disordered category. This enrichment becomes more pronounced when three
proteases are knocked out.
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two parameters. In the first model, kactive scales with kdilution, i.e., the
protein total half-life remains a constant fraction of the cell cycle time.
In the second model, active degradation rates are independent of
growth rate, i.e., the active degradation rate of each protein remains
constant regardless of cell doubling time.

The two models have distinct predictions on how the total
protein half-time (t1/2, total) should scale with changing cell cycle
times. In the scaledmodel, t1/2, total for each protein linearly increases

with cell cycle time (Fig. 6B). In contrast, in the constant model, the
dilution rate dominates for rapidly dividing cells while the con-
tribution from active degradation becomes more relevant for slower
dividing cells.

To test the models’ predictions, we grew E. coli cells with a range
of doubling times, including rapidly doubling cells with unlimited
growth inminimalmedium (0.7 h) and slower doubling cells in carbon-
limited chemostats (3 h, 6 h, and 12 h). We found that the data favored
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ribosomal proteins).
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the constant model regardless of which cell cycle times we compared
(Fig. 6C). This indicates that active protein degradation rates typically
remain constant regardless of cell division rates.

We noted interesting exceptions to the model (Supplementary
Fig. 8), however, particularly when comparing slower-growing cells in
the chemostat to cells growing without nutrient limitation. For
example, RpoS degrades faster in unlimited growth conditions than
the non-scaled model would predict based on chemostat measure-
ments. This is consistent with the previous finding that RpoS is rapidly
degraded in exponentially growing cells but becomes stabilized when
nutrient-limited84.

Because kactive rates are generally constant across cell division
rates, we can more accurately measure kactive when kdilution is small.
Importantly, the observed constancy of degradation rates, regardless
of cell cycle times, allows us to extrapolate active degradation rates
from conditions with long cell division times (e.g., chemostats with 6-h
doubling times) to conditions with more rapid cell division times, in

which separating between active degradation rates and dilution rates
is experimentally difficult. Thus, the protein half-lives in this manu-
script, primarily obtained in the chemostat, are a valuable resource
that can be extrapolated to arbitrary cell division rates.

Discussion
This paper introduces a technique for the global measurement of
protein turnover on a gene-by-gene basis by combining complement
reporter ion quantification with heavy isotope labeling of nutrients
(Fig. 1). Applying our method to measure protein turnover across
multiple nutrient limitations, we found thatmost cytoplasmic proteins
slowly degrade in nitrogen-limited conditions (Fig. 2). By contrast, in
phosphorus-limited and carbon-limited conditions, proteins are
mostly stable. We observe this phenomenon in a nitrogen-limited
chemostat and in a nitrogen-starved batch culture. The slow degra-
dation of cytoplasmic proteins is likely a strategy E. coli has developed
to keep scarce amino acids available, which could be critical to various
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Fig. 6 | Active degradation rates are generally uncoupled from cell
division rates. A Two simple models describing the relationship between cell
divisionandprotein-specific turnover rates. The totalprotein turnover rate (ktotal) is
the sum of the active degradation rate (kactive) and the dilution rate due to cell
division (kdilution). In the “scaled model,” active degradation rates increase pro-
portionally to division rates with a protein-specific constant (αp), i.e., active
degradation remains a constant fraction of the total protein turnover rate. In the
“constant model,” protein-specific active degradation rates are constant (βp),
regardless of changing division rates. In this case, for slower-dividing cells, the
contribution of active degradation increases relative to dilution. B t1/2, total is the
time taken to replace half the protein. A theoretical plot of t1/2, total from two
conditions (i, j) where cell division rates change by a factor of ri,j < 1. In the scaled

model, t1/2, total values for all the proteins lie on a straight linewith slope ri,j (orange).
In the constant model, the t1/2, total values follow a nonlinear relationship between
the two doubling times (purple). For proteins with very high active degradation
rates, the constant model predicts that t1/2, total will approach the same value for
both doubling times, indicated by the slope 1 line (black). For diluting proteinswith
no active degradation, bothmodels converge to the doubling times of conditions i
and j.C Scatter plots of protein t1/2, total for E. coli grown at doubling times of 6 h (C-
lim), 3 h (C-lim), and 0.7 h (definedminimalmedia batch) compared to 12 h (C-lim).
The dotted lines represent the dilution limit. We observe a strong statistical pre-
ference for the “constant model,” in which active degradation rates are uncoupled
from cell cycle duration. Shown are the likelihood ratios (L) of the constant models
compared to the scaled models assuming normally distributed errors.
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metabolic processes, including the ability to synthesize new proteins
and adapt the proteome to changing environments. To test this
hypothesis, we measured growth curves following nutrient upshift
from nitrogen starvation to LBmedia for both the wild-type strain and
the mutant lacking lon, clpP, and hslV which has reduced cytoplasmic
protein turnover. We find that the triple knock-out is less able to adapt
to the new conditions and has a significant growth delay (~80min)
compared to the wild-type (Supplementary Fig. 9). Bulk protein turn-
overmeasurements in the 1950s showed that Saccharomyces cerevisiae
also increases overall protein turnover when starved of nitrogen15,
suggesting that a similar strategy might apply to eukaryotes.

We assigned protein substrates to proteases by measuring the
change in protein turnover rates in protease knockout strains (Fig. 3).
We were surprised by how little protein degradation changed in the
knockout strains, particularly when deleting the canonical proteases
ClpP and Lon. We showed that in these knockout strains, only a few
proteins have a slower degradation rate, and the observeddegradation
of cytoplasmic proteins continues. Even when we knocked out clpP,
lon, and hslV simultaneously, 40% of total protein turnover remains,
including the cytoplasmic recycling and the degradation of many
short-lived proteins. However, we observe remarkable additive and
redundant effects when comparing protein turnover rates in the
individual knockoutswith the triple knockout. This suggests thatmany
proteins are substrates for more than one protease.

We could not extend these approaches to identify substrates for
FtsH, as its deletion is lethal due to the accumulation of LPS. However,
when combined with a fabZ mutation55, we could show that the
degradation in nitrogen-starved batch culture continues when ftsH is
deleted. The lack of significant overlap between proteins that are still
degraded in the ΔclpPΔlonΔhslV strain and proteins pulled down from
an FtsH-trap63 also suggests that FtsH is likely not responsible for the
remaining degradation. So far, we have not been able to generate
viable quadruple knockout cells for all four known ATP-dependent
proteases in E. coli.We, therefore, cannot completely rule out that FtsH
is responsible for the remaining cytoplasmic degradation when the
other three proteases are deleted. Regardless, a major protein degra-
dationpathway in E. coli still needs tobediscovered: either FtsHplays a
much more significant role than generally anticipated, or there is an
entirely different pathway outside the four known ATP-dependent
proteases. While protein degradation itself is energetically favorable,
unfolding a protein requires energy. E. coli encodes many non-ATP-
dependent proteases85, but the rapid turnover of proteins in the triple
knockout line and the fact that most cytoplasmic proteins are struc-
tured suggest that some ATP-dependent unfoldase is involved. Per-
haps, an adapter like ClpX or a chaperone unfolds proteins and allows
those substrates to be degraded byone of the proteases believed to be
energy-independent85.

We found that many proteins have short half-lives regardless of
nutrient limitations (Fig. 4). Among those, we see an over-
representation of transcriptional regulators. Rapid turnover might
enable a quick response to changing growth conditions to rapidly
adjust transcription rates to the new environment. Surprisingly, we
found no correlation between a protein’s total half-life and its
N-terminal residue suggesting that the N-end rule is a poor predictor
for protein stability in vivo. In contrast, disordered proteins are dras-
tically enriched among proteins with rapid turnover (Fig. 4F). This
might suggest that many short-lived proteins could be degraded in an
energy-independent way. This is further supported by our finding that
the enrichment of disordered proteins is further increased among
proteins that are degraded when the three ATP-dependent proteases
ClpP, Lon, and HslV are deleted. We observe highly significant corre-
lation among protein turnover for functionally related proteins like
complexes and those expressed from operons. We found striking
examples of this regulation in phosphonate metabolism and flagella
but can currently only speculate about the underlying regulatory

mechanisms and functional importance. Further studies will be
required to follow up on these intriguing observations.

When we compared protein turnover across E. coli growth rates,
we found that rates of active protein degradation remain constant
(Fig. 6). Based on this finding, the relative contribution of active
degradationcompared todilution due to cell divisionmust change as a
function of growth rate. Therefore, relative protein levels of actively
degrading proteins must change with differing cell growth rates, or
cells must compensate by adjusting transcription and/or translation
rates. Protein expression regulation combines gene-specific effects
with such global parameter changes16. Our insight will help to improve
genome-wide protein abundance regulationmodels and could help to
better engineer gene expression circuits with desired properties.

The discoveries in this manuscript have been enabled by intro-
ducing a method to measure protein turnover. We chose to use heavy
ammonium to label newly synthesized proteins to avoid the use of
mutants and to boost the signal for short labeling times. The resulting
MS1 and MS2 spectra are extremely complex, making standard quan-
tification approaches challenging42. We have overcome these chal-
lenges by taking advantage of the outstanding ability of the
complement reporter ion strategy (TMTproC) to distinguish signals
from the chemical background46. The introduced methods are
applicable widely beyond E. coli. Our ability to use comparatively
cheap heavy isotope labels opens up the possibility of performing
similar studies on larger animals, e.g., after D2O intake, whichwould be
cost-prohibitive with heavy amino acid labeling42,86. Unlikemany other
cutting-edge multiplexed proteomics approaches, the applied tech-
nology is compatiblewith comparatively simple andwidely distributed
instrumentation, such as quadrupole-Orbitrap instruments, as we
avoid the need for an additional gas-phase isolation step. The required
analysis software is available on our lab’s GitHub site (https://github.
com/wuhrlab/TMTProC).

We have generated a broad resource of protein turnover rates in
thirteen different growth conditions, each with biological replicates.
The investigated conditions include varying cell cycle times from
40min to 12 h, nitrogen-, carbon-, phosphorus-limitation, and various
protease knockout strains. We expect this resource to allow
researchers to complement their data sets with protein turnover
information. Our finding that active degradation rates are typically
constant regardless of division rates will allow researchers to extra-
polate protein half-lives to arbitrary conditions. Our measurements of
how protein turnover rates change in protease knockout strains will
help refine protease-substrate relationships. Unlike studies relying on
trap experiments or protein microarrays, we could start to deduce the
redundant nature of these connections. We have shown the power of
the provided resource by demonstrating cytoplasmic recycling in
nitrogen limitation and by finding a scaling law for active protein
degradation rates with varying cell cycle times. Thus, we advance
protein turnover measurement technology, provide a resource for
~3.2k E. coli protein half-lives under various conditions, and provide
fundamental insight into global protein expression regulation
strategies.

Methods
Turnover measurements
E. coli strain NCM3722 was grown in continuous culture chemostats at
37 °C. The chemostat (Sixfors, HT) volume was 300mL with oxygen
and pH probes to monitor the culture. pH was maintained at 7.2 ± 0.1.
40mMMOPSmedia (M2120, Teknova)was usedwith glucose (0.4%w/
v, Sigma G8270), ammonium (9.5mM NH4Cl, Sigma A9434) and
phosphate (1.32mM K2HPO4, Sigma P3786) added separately. For C-
and N-limiting media, glucose and ammonium concentrations were
reduced by fivefold (0.08% and 1.9mM, respectively). The P-limiting
medium contains 0.132mM K2HPO4. Cells were grown up to steady
state in a media containing light ammonium for ~8–10 generations.
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This is equivalent to running the 6 h doubling time chemostat for
~2.5 days before switching the feed to a media containing heavy
ammonium (CIL, NLM-107-10-10). Based on the OD600, ~4–6mL of
effluent is collected after the switch for proteomics analysis. The
OD600 for the chemostats are as follows: P-lim OD ~ 0.71, N-lim OD
~0.51, C-lim OD ~0.68. The effluent is immediately frozen in liquid
nitrogen.

For the minimal media no limitation batch cultures, NCM3722
cells were grown at 37 °C in 40mM MOPS media with glucose (0.4%),
ammonium (9.5mM) and phosphate (1.32mM) added separately. The
cells are grown overnight in themedium containing light nitrogen and
are diluted 500x in the fresh media containing light ammonium. The
cells are grown up to an OD ~0.4 before diluting by 10x into medium
containing heavy nitrogen. We used 15N-ammonium rather than
labeled amino acids because of the higher signal we obtain with a low
labeling fraction. For example, when 10% of the nutrient pool is
labeled: If using heavy arginine, 90% of newly synthesized tryptic
peptides ending in arginine are unlabeled. In contrast, when using
heavy ammonium, a peptide having 15 nitrogens, only (90%)15 = 21%
will be unlabeled. Furthermore,wewould have toworkwith auxotroph
mutants when using amino acid labeling. Subsequently, samples of
~200mgofprotein per timepointwere collected. Tomaintain the cells
in steady state, they are repeatedly diluted into fresh media after it
reaches the OD ~0.4.

The time points for proteomics collection depend on the dou-
bling time of the bacteria. Table 2 details the time point used for the
sample collection for all doubling times analyzed in this study:

Chloramphenicol translation inhibition assay
E. coli strain NCM3722 was grown in batch cultures at 37 °C. 40mM
MOPS media (M2120, Teknova) was used with glucose (0.4%, Sigma
G8270), L-arginine (2.37mM, Sigma A5006) and phosphate (1.32mM
K2HPO4, Sigma P3786) added separately. The doubling time was 2 h.
As the cells reached exponential growth, OD ~ 0.3, translation inhi-
bition drugs were added to arrest the protein synthesis. Chlor-
amphenicol was added at 200mg/mL. E. coli cells (OD: 0.3 4mL
culture gave ~200mg of protein) were harvested by centrifuging at
5000 × g for ~ 2min. 10 samples were collected post the addition of
drugs at [0, 10, 20, 40, 60, 80, 100, 120, 180, 240] min for the pro-
teomic analysis.

Batch starvation assay
An overnight culture of E. coli grown in Luria-Bertani (LB) broth was
diluted 1:100 in minimal media (40mM MOPS media (M2120,
Teknova), 0.4% glucose (Sigma G8270), 9.5mM ammonium chloride
(Sigma A9434), and 1.32mM potassium phosphate dibasic (Sigma
P3786)). Cultureswere shaken at 30 °Cuntil anODof ~0.5was reached.
The culture was collected and centrifuged at 5000× g for 10min. The
supernatant was discarded, and cells were washed three times with
40mM MOPS, centrifuging between each wash. Cells were then re-
suspended in identical minimal media but lacking either glucose or
ammonium chloride. The culture was then shaken at 30 °C and sam-
ples were taken at the following times (in minutes): 0, 151, 226, 407,
408, 944. The samples were prepared for proteomic analysis using the
protocol described in Sample Preparation.

Strain construction
The ΔclpP, Δlon, ΔhslV single mutants were generated by P1 trans-
duction from the Keio collection87 into E. coli strain NCM3722. The
ΔclpPΔlonΔhslV triple knockout was provided by the Basan lab88.

The ΔftsH strain was generated as follows. First, fabZL85P was
moved into the l Red strain DY378 with cadR-IG-yaeH::cat by linkage
transduction89. Transductants were selected for on LB supplemented
with 20mgmL–1 chloramphenicol and screened for the fabZL85P
mutation by DNA sequencing (Genewiz, South Plainfield, NJ). The ftsH
coding sequence in the fabZL85Pmutant was deleted and replacedwith
the kanamycin resistance cassette and flanking flippase recognition
target sites from pKD4 using l Red-mediated recombination56.

Strains and plasmids. The information for all the strains and plasmids
is contained in Table 3.

Primers. The information for all the primers used is contained in
Table 4.

Sample preparation and data analysis for quantitative
proteomics
Samples were mostly prepared as previously described90. Briefly, each
sample containing ~200mg of total protein was lyophilized to remove
the water and then resuspended in 200mL of lysis buffer containing
50mM HEPES pH 7.2, 2% CTAB (hexadecyltrimethylammonium bro-
mide), 6M GuHCl (guanidine hydrochloride), and 5mM DTT. Cells
were lysed by sonication: 10 pulses, 30 s, at 60% amplitude and further
heating the lysate at 60 °C for 20min. Next, 200mL of lysate from
every condition was methanol-chloroform precipitated. Protein con-
centration was determined using the bicinchoninic acid (BCA) protein
assay (Thermo Fisher). Samples were then diluted to 2M GuHCl with
10mM EPPS pH 8.5 and digested with 20 ngμL–1 LysC (Wako) at room
temperature overnight. Samples were further diluted to 0.5M GuHCl
with 10mM EPPS pH 8.5 and digested with an additional 20 ngμL–1

LysC and 10 ngμL–1 sequencing-grade trypsin (Promega) at 37 °C for
16 h. The digested samples were dried using a vacuum evaporator at
room temperature and taken up in 200mM EPPS pH 8.0. The multi-
plexing TMTpro tags46 were added at a mass ratio of 5:1 tag/peptide to
~40mg of peptide per condition and allowed to react for 2 h at room
temperature. The reaction was quenched with 1% hydroxylamine
(30min, RT). Samples from all conditions were combined into one
tube, acidified with 5% phosphoric acid (pH < 2). The samples are then
ultracentrifuged at 100,000× g at 4 °C for an hour to pellet undigested
proteins. The supernatants were dried using a vacuum evaporator at
room temperature to remove acetonitrile from the labeling step. Dry
samples were taken up in HPLC grade water and subjected to medium
pH reverse phase prefractionation. Samples are prefractionated with
medium pH reverse-phase HPLC (Zorbax 300 Extend C18,
4.6 × 250mm column, Agilent) with 10mM ammonium bicarbonate,
pH 8.0, using 5% acetonitrile for 17min followed by an acetonitrile
gradient from 5% to 30%. Each fraction was dried and resuspended in

Table 2 | The time point used for the sample collection for all
doubling times analyzed in this study

Doubling time Reactor type Time points for sample collection (min)

42min Batch 0, 5, 12, 20, 30, 45, 60,175

3 h Chemostat 0, 45, 105, 186, 270, 366, 510, 729

6 h Chemostat 0, 107, 229, 376, 548, 735, 1024, 1612

12 h Chemostat 0, 173, 302, 444, 649, 873, 1230, 2166

Table 3 | Information for all the strains and plasmids

Name Description Source or
reference

Strains

DY378 W3110 λcI857 Δ(cro‐bioA) 56

RLG986 DY378 fabZL85P cdaR-IG-yaeH::cat; CamR This study and55,96

RLG1017 DY378 fabZL85P cdaR-IG-yaeH::cat DftsH::kan;
CamR KanR

This study and55,96

Plasmids

pKD4 Template plasmid containing a FRT-flanked
kanamycin resistance cassette; AmpR KanR

97
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100 µL of HPLC water. Fractions were acidified to pH< 2 with phos-
phoric acid and desalted. The samples were resuspended in 1% formic
acid to 1mgmL–1 and 1mg of the total combined sample was analyzed
with the TMTproC approach46. We used two strategies to ensure that
the monoisotopic peak was isolated for each peptide. First, isotopic
envelope fitting was used to shift the quad isolation window towards
the predictedmonoisotopic peak via a diagnostic routine provided by
Thermo Fisher Scientific. We added an additional filtering step during
data analysis that was then used to remove any erroneously isolated
non-M0-peaks once the identity of the peptidewasdetermined. To this
end, we simply compared the pseudo-monoisotopic peak mass and
charge state with the used isolation windowm/z values. The difference
between the isolation and monoisotopic m/z will be ~0 for a true M0

isolation, and a multiple of 1/z if not.
Samples were analyzed on an EASY-nLC 1200 (Thermo Fisher

Scientific) HPLC coupled to an Orbitrap Fusion Lumos mass spectro-
meter (Thermo Fisher Scientific) with Tune version 3.3. Peptides were
separated on an Aurora Series emitter column (25 cm× 75μm ID,
1.6μmC18) (Ionopticks, Australia) and held at 60 °C during separation
using an in-house built column oven, over 90min for fractionated
samples, applying nonlinear-acetonitrile gradients at a constant flow
rate of 350nLmin–1.MSparameterwere set as previouslydescribed for
TMTproC analysis46. Briefly, the mass spectrometer was operated to
analyze positively charged ions in a data-dependent MS2-mode,
recording centroid data with the RF lens level at 60% and the following
settings for full scans: AGC target of 4E5 charges, maximum ion
injection time of 50ms, scan range m/z 350–1400 with wide quadru-
pole isolation enabled, 120k OrbitrapTM resolution.

Following the survey scan, the following filters were applied for
triggering MS2 scans. Ions with z = 2 were analyzed if their m/z-ratio
was between 500 and 1074 and had an intensity greater than 1.9E5.
Isolated masses were excluded for 60 s after triggering with a mass
tolerance window of ±10 ppm, while also excluding isotopes and dif-
ferent charge states of the isolated species. AGC target was set to 7.5E4
charges and the maximum ion injection times was 123ms. The
OrbitrapTM resolution was 60k in normal mass range mode. The
quadrupole was utilized for isolation with an isolation width of 0.4 Th,
and ions were fragmented with 30% CID amplitude (10ms activation
time, activation Q of 0.25).

The data was analyzed using the Gygi Lab GFY software licensed
fromHarvard. The detailed description canbe found in ref. 91. Thermo
Fisher Scientific raw-files were converted to mzXML using ReAdW.exe
(http://svn.code.sf.net/p/sashimi/code/). Assignment of MS2 spectra
was performed using the SEQUEST92 algorithm by searching the data
against the combined reference proteomes for E. coli acquired from
Uniprot on 08/2017 along with common contaminants such as human
keratins and trypsin. The target-decoy strategywas used to construct a
second database of reversed sequences that were used to estimate the
false discovery rate on the peptide level93. SEQUEST searches were
performed using a 20-ppm precursor ion tolerance with the require-
ment that both N- and C terminal peptide ends are consistent with the
protease specificities of LysC and Trypsin. A peptide levelMS2 spectral
assignment false discovery rate of 1% was obtained by applying the
target-decoy strategywith linear discriminant analysis94. Peptideswere

assigned to proteins and a second filtering step to obtain a 1% FDR on
the protein level was applied95. Peptides that matched multiple pro-
teins were assigned to the proteins with themost unique peptides. For
all methods, peptides were only considered quantified if the signal-to-
FT noise ratio (S:N) across all channels was greater than forty.

Identification of complementary ion peaks, modeling of the iso-
lation window, and deconvolution of the complementary peaks were
performed aspreviously described46. Briefly, the complement reporter
ion cluster was located, and the observed ratios were extracted. Using
the measured shape of the isolation window and measured TMTpro
isotopic impurities, the relative abundance and composition of each
peak that was isolated from the precursor envelope was determined
and used in the deconvolution algorithm.

Statistics and data reproducibility
All protein turnover ratemeasurements were replicated for each strain
and condition. After collecting replicates for the wild-type strain in
carbon limitation at a 6-h doubling time, we determined that the
measurements were highly reproducible and that a significant fraction
of the proteomecouldbeconfidently assigned as degradingmore than
dilution at a p-value cutoff of 0.05 (Figs. 1E and 2B). The batch star-
vation assay was also initially done in duplicates. Due to the large
sample of the technical replication (>1000 proteins quantified at a
false discovery rate of 0.5%), we were able to confidently separate the
decrease in protein abundance of the cytoplasmic and membrane-
bound proteins with a p-value < 1E–15 (Fig. 2E). Growth assay com-
parison of the wild-type strain (NCM3722) and the triple protease
knock-out on minimal media with thymidine as the sole nitrogen
source were done in triplicate. All triplicates agreed well with each
other, so no further replication was deemed to be necessary (p-
value < 1E–4, Fig. 5D).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with
the dataset identifier PXD042444. Source data are provided with
this paper.

Code availability
The code used for analyzing these data sets can be found on our lab’s
Github athttps://github.com/wuhrlab/ProteinTurnoverEcoli. The code
is also citable using: https://doi.org/10.5281/zenodo.10895828.
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